Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans

Abstract

Considerable evidence indicates that NO biology involves a family of NO-related molecules and that S-nitrosothiols (SNOs) are central to signal transduction and host defence1,2,3,4,5. It is unknown, however, how cells switch off the signals or protect themselves from the SNOs produced for defence purposes. Here we have purified a single activity from Escherichia coli, Saccharomyces cerevisiae and mouse macrophages that metabolizes S-nitrosoglutathione (GSNO), and show that it is the glutathione-dependent formaldehyde dehydrogenase. Although the enzyme is highly specific for GSNO, it controls intracellular levels of both GSNO and S-nitrosylated proteins. Such ‘GSNO reductase’ activity is widely distributed in mammals. Deleting the reductase gene in yeast and mice abolishes the GSNO-consuming activity, and increases the cellular quantity of both GSNO and protein SNO. Furthermore, mutant yeast cells show increased susceptibility to a nitrosative challenge, whereas their resistance to oxidative stress is unimpaired. We conclude that GSNO reductase is evolutionarily conserved from bacteria to humans, is critical for SNO homeostasis, and protects against nitrosative stress.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Escherichia coli GSNO reductase.
Figure 2: Mouse GSNO reductase.
Figure 3: GSNO reductase in S. cerevisiae protects from nitrosative stress.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. De Groote, M. A., Testerman, T., Xu, Y., Stauffer, G. & Fang, F. C. Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272, 414–417 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Gaston, B. et al. Endogenous nitrogen oxides and bronchodilator S-nitrosothiols in human airways. Proc. Natl Acad. Sci. USA 90, 10957–10961 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Hausladen, A., Privalle, C. T., Keng, T., DeAngelo, J. & Stamler, J. S. Nitrosative stress: activation of the transcription factor OxyR. Cell 86, 719–729 (1996).

    Article  CAS  Google Scholar 

  4. Mannick, J. B. et al. Fas-induced caspase denitrosylation. Science 284, 651–654 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Mayer, B. et al. A new pathway of nitric oxide/cyclic GMP signaling involving S-nitrosoglutathione. J. Biol. Chem. 273, 3264–3270 (1998).

    Article  CAS  Google Scholar 

  6. Askew, S. C., Barnett, D. J., McAninly, J. & Williams, D. L. H. Catalysis by Cu2+ of nitric oxide release from S-nitrosothiols. J. Chem. Soc. Perkin Trans. 2, 741–745 (1995).

    Article  Google Scholar 

  7. Scorza, G., Pietraforte, D. & Minetti, M. Role of ascorbate and protein thiols in the release of nitric oxide from S-nitroso-albumin and S-nitroso-glutathione in human plasma. Free Radicals Biol. Med. 22, 633–642 (1997).

    Article  CAS  Google Scholar 

  8. Singh, S. P., Wishnok, J. S., Keshive, M., Deen, W. M. & Tannenbaum, S. R. The chemistry of the S-nitrosoglutathione/glutathione system. Proc. Natl Acad. Sci. USA 93, 14428–14433 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Nikitovic, D. & Holmgren, A. S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J. Biol. Chem. 271, 19180–19185 (1996).

    Article  CAS  Google Scholar 

  10. Hou, Y., Guo, Z., Li, J. & Wang, P. G. Seleno compounds and glutathione peroxidase catalyzed decomposition of S-nitrosothiols. Biochem. Biophys. Res. Commun. 228, 88–93 (1996).

    Article  CAS  Google Scholar 

  11. Hogg, N., Singh, R. J., Konorev, E., Joseph, J. & Kalyanaraman, B. S-Nitrosoglutathione as a substrate for gamma-glutamyl transpeptidase. Biochem. J. 323, 477–481 (1997).

    Article  CAS  Google Scholar 

  12. Trujillo, M., Alvarez, M. N., Peluffo, G., Freeman, B. A. & Radi, R. Xanthine oxidase-mediated decomposition of S-nitrosothiols. J. Biol. Chem. 273, 7828–7834 (1998).

    Article  CAS  Google Scholar 

  13. Jensen, D. E., Belka, G. K. & Du Bois, G. C. S-Nitrosoglutathione is a substrate for rat alcohol dehydrogenase class III isoenzyme. Biochem. J. 331, 659–668 (1998).

    Article  CAS  Google Scholar 

  14. Hausladen, A., Gow, A. J. & Stamler, J. S. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl Acad. Sci. USA 95, 14100–14105 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Eu, J. P., Liu, L., Zeng, M. & Stamler, J. S. An apoptotic model for nitrosative stress. Biochemistry 39, 1040–1047 (2000).

    Article  CAS  Google Scholar 

  16. Akaike, T. et al. Nanomolar quantification and identification of various nitrosothiols by high performance liquid chromatography coupled with flow reactors of metals and Griess reagent. J. Biochem. (Tokyo) 122, 459–466 (1997).

    Article  CAS  Google Scholar 

  17. Liu, L., Zeng, M., Hausladen, A., Heitman, J. & Stamler, J. S. Protection from nitrosative stress by yeast flavohemoglobin. Proc. Natl Acad. Sci. USA 97, 4672–4676 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Wehner, E. P., Rao, E. & Brendel, M. Molecular structure and genetic regulation of SFA, a gene responsible for resistance to formaldehyde in Saccharomyces cerevisiae, and characterization of its protein product. Mol. Gen. Genet. 237, 351–358 (1993).

    CAS  PubMed  Google Scholar 

  19. Gutheil, W. G., Holmquist, B. & Vallee, B. L. Purification, characterization, and partial sequence of the glutathione-dependent formaldehyde dehydrogenase from Escherichia coli: a class III alcohol dehydrogenase. Biochemistry 31, 475–481 (1992).

    Article  CAS  Google Scholar 

  20. Shafqat, J. et al. Pea formaldehyde-active class III alcohol dehydrogenase: common derivation of the plant and animal forms but not of the corresponding ethanol-active forms (classes I and P). Proc. Natl Acad. Sci. USA 93, 5595–5599 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Uotila, L. & Koivusalo, M. in Coenzymes and Cofactors (ed. Dolphin, D.) 517–551 (John Wiley & Sons, New York, 1989).

    Google Scholar 

  22. Barber, R. D. & Donohue, T. J. Function of a glutathione-dependent formaldehyde dehydrogenase in Rhodobacter sphaeroides formaldehyde oxidation and assimilation. Biochemistry 37, 530–537 (1998).

    Article  CAS  Google Scholar 

  23. Ras, J. et al. Isolation, sequencing, and mutagenesis of the gene encoding NAD- and glutathione-dependent formaldehyde dehydrogenase (GD-FALDH) from Paracoccus denitrificans, in which GD-FALDH is essential for methylotrophic growth. J. Bacteriol. 177, 247–251 (1995).

    Article  CAS  Google Scholar 

  24. Shen, S., Sulter, G., Jeffries, T. W. & Cregg, J. M. A strong nitrogen source-regulated promoter for controlled expression of foreign genes in the yeast Pichia pastoris. Gene 216, 93–102 (1998).

    Article  CAS  Google Scholar 

  25. Kuwada, M., Horie, S. & Ogura, Y. Studies on the Enzymatic reduction of C-nitroso compounds. II. Multiple forms of liver C-nitrosoreductase and the identity with alcohol dehydrogenase. J. Biochem. (Tokyo) 88, 859–69 (1980).

    Article  CAS  Google Scholar 

  26. Kluge, I., Gutteck-Amsler, U., Zollinger, M. & Do, K. Q. S-nitrosoglutathione in rat cerebellum: identification and quantification by liquid chromatography-mass spectrometry. J. Neurochem. 69, 2599–2607 (1997).

    Article  CAS  Google Scholar 

  27. Minning, D. M. et al. Ascaris haemoglobin is a nitric oxide-activated ‘deoxygenase’. Nature 401, 497–502 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Ribeiro, J. M., Hazzard, J. M., Nussenzveig, R. H., Champagne, D. E. & Walker, F. A. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 260, 539–541 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Glover, R. E., Koshkin, V., Dunford, H. B. & Mason, R. P. The reaction rates of NO with horseradish peroxidase compounds I and II. Nitric Oxide 3, 439–444 (1999).

    Article  CAS  Google Scholar 

  30. Liu, L., Zeng, M. & Stamler, J. S. Hemoglobin induction in mouse macrophages. Proc. Natl Acad. Sci. USA 96, 6643–6647 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Kane and S. Cutler for help with tetrad dissection and J. Toronto for performing enzyme assays. The work was partly funded by an NIH grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Stamler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Hausladen, A., Zeng, M. et al. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410, 490–494 (2001). https://doi.org/10.1038/35068596

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35068596

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing