Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GTP-dependent segregation of H-ras from lipid rafts is required for biological activity

Abstract

Different sites of plasma membrane attachment may underlie functional differences between isoforms of Ras. Here we show that palmitoylation and farnesylation targets H-ras to lipid rafts and caveolae, but that the interaction of H-ras with these membrane subdomains is dynamic. GTP-loading redistributes H-ras from rafts into bulk plasma membrane by a mechanism that requires the adjacent hypervariable region of H-ras. Release of H-ras-GTP from rafts is necessary for efficient activation of Raf. By contrast, K-ras is located outside rafts irrespective of bound nucleotide. Our studies identify a novel protein determinant that is required for H-ras function, and show that the GTP/GDP state of H-ras determines its lateral segregation on the plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasma-membrane localization of GFP–tH and GFP–tK.
Figure 2: Raft association of GFP–tH visualized by crosslinking GPI-anchored PLAP.
Figure 3: Distribution of Ras constructs on flotation gradients.
Figure 4: GTP loading in vivo and in vitro is sufficient to drive H-ras out of lipid rafts.
Figure 5: Plasma-membrane distribution of full-length Ras.
Figure 6: Quantification of Ras distribution on the plasma membrane.
Figure 7: Raf activation in plasma-membrane microdomains.

Similar content being viewed by others

References

  1. Johnson, L. et al. K-ras is an essential gene in the mouse with partial functional overlap with N-ras. Genes Dev. 11, 2468– 2481 (1997).

    Article  CAS  Google Scholar 

  2. Umanoff, H., Edelmann, W., Pellicer, A. & Kucherlapati, R. The murine N-ras gene is not essential for growth and development. Proc. Natl Acad. Sci. USA 92, 1709– 1713 (1995).

    Article  CAS  Google Scholar 

  3. Yan, J., Roy, S., Apolloni, A., Lane, A. & Hancock, J. F. Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J. Biol. Chem. 273, 24052–24056 (1998).

    Article  CAS  Google Scholar 

  4. Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J. & Der, C. J. Increasing complexity of Ras signaling . Oncogene 17, 1395–1413 (1998).

    Article  CAS  Google Scholar 

  5. Hancock, J. F., Magee, A. I., Childs, J. E. & Marshall, C. J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 ( 1989).

    Article  CAS  Google Scholar 

  6. Hancock, J. F., Paterson, H. & Marshall, C. J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139 ( 1990).

    Article  CAS  Google Scholar 

  7. Apolloni, A., Prior, I. A., Lindsay, M., Parton, R. G. & Hancock, J. F. H-ras but not K-ras traffics to the cell surface via the exocytic pathway. Mol. Cell. Biol. 20, 2475–2487 ( 2000).

    Article  CAS  Google Scholar 

  8. Choy, E. et al. Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69– 80 (1999).

    Article  CAS  Google Scholar 

  9. Roy, S. et al. Dominant-negative caveolin inhibits H-ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol. 1, 98–105 (1999).

    Article  CAS  Google Scholar 

  10. Hancock, J. F., Cadwallader, K., Paterson, H. & Marshall, C. J. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J. 10, 4033 –4039 (1991).

    Article  CAS  Google Scholar 

  11. Harder, T., Scheiffele, P., Verkade, P. & Simons, K. Lipid domain structure of the plasma membrane revealed by patching of membrane compartments. J. Cell Biol. 141, 929– 942 (1998).

    Article  CAS  Google Scholar 

  12. Madore, N. et al. Functionally different GPI proteins are organized in different domains on the neuronal surface. EMBO J. 18, 6917–6926 (1999).

    Article  CAS  Google Scholar 

  13. Song, S. K. et al. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J. Biol. Chem. 271, 9690–9697 (1996).

    Article  CAS  Google Scholar 

  14. Koleske, A. J., Baltimore, D. & Lisanti, M. P. Reduction of caveolin and caveolae in oncogenically transformed cells. Proc. Natl Acad. Sci. USA 92, 1381–1385 (1995).

    Article  CAS  Google Scholar 

  15. Willumsen, B. M. et al. Transforming p21 ras protein: flexibility in the major variable region linking the catalytic and membrane anchoring domains. EMBO J. 4, 2893–2896 ( 1985).

    Article  CAS  Google Scholar 

  16. Khwaji, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H. & Downward, J. Matrix adhesion and Ras transformation both activate a phosphoinisotide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16, 2783– 2793 (1997).

    Article  Google Scholar 

  17. Downward, J., Graves, J. D., Warne, P. H., Rayter, S. & Cantrell, D. A. Stimulation of p21ras upon T-cell activation. Nature 346, 719– 723 (1990).

    Article  CAS  Google Scholar 

  18. Porfiri, E. & Hancock, J. F. Stimulation of nucleotide exchange on Ras- and Rho-related proteins by small GTP-binding protein GDP dissociation stimulator. Methods Enzymol. 256, 85– 90 (1995).

    Article  CAS  Google Scholar 

  19. Morrison, D. K. & Cutler, R. E. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9, 174–179 (1997).

    Article  CAS  Google Scholar 

  20. Roy, S., Lane, A., Yan, J., McPherson, R. & Hancock, J. F. Activity of plasma membrane recruited Raf-1 is regulated by Ras via the Raf zinc finger. J. Biol. Chem. 272, 20139–20145 (1997).

    Article  CAS  Google Scholar 

  21. Roy, S. et al. 14-3-3 potentiates Ras dependent Raf-1 activation in vitro and in vivo. Mol. Cell. Biol. 18, 3947–3955 (1998).

    Article  CAS  Google Scholar 

  22. Mason, C. et al. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18, 2137– 2148 (1999).

    Article  CAS  Google Scholar 

  23. Leevers, S. J., Paterson, H. F. & Marshall, C. J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369 , 411–414 (1994).

    Article  CAS  Google Scholar 

  24. Stokoe, D., Macdonald, S. G., Cadwallader, K., Symons, M. & Hancock, J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463–1467 (1994).

    Article  CAS  Google Scholar 

  25. Niv, H., Gutman, O., Henis, Y. I. & Kloog, Y. Membrane interactions of constitutively active GFP–Ki-Ras4B and their role in signaling. J. Biol. Chem. 274, 1606–1613 (1998).

    Article  Google Scholar 

  26. Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G. & Brown, D. A. Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. J. Biol. Chem. 274, 3910–3917 ( 1999).

    Article  CAS  Google Scholar 

  27. Moffett, S., Brown, D. A. & Linder, M. E. Lipid-dependent targeting of G-proteins into rafts . J. Biol. Chem. 275, 2191– 2198 (2000).

    Article  CAS  Google Scholar 

  28. Pralle, A., Keller, P., Florin, E. L., Simons, K. & Horber, J. K. H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell. Biol. 148, 997–1007 (2000).

    Article  CAS  Google Scholar 

  29. Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains visualized by single molecule microscopy . EMBO J. 19, 892–901 (2000).

    Article  CAS  Google Scholar 

  30. Mineo, C., Gill, G. N. & Anderson, R. W. Regulated migration of epidermal growth factor receptor from caveolae. J. Biol. Chem. 274, 30636 –30643 (1999).

    Article  CAS  Google Scholar 

  31. Scheel, J., Srinivasan, J., Honnert, U., Henske, A. & Kurzchalia, T. V. Involvement of caveolin-1 in meiotic cell-cycle progression in Caenorhabditis elegans. Nature Cell Biol. 1, 127–129 (1999).

    Article  CAS  Google Scholar 

  32. Hall, A. & Self, A. J. The effect of Mg2+ on the guanine nucleotide exchange rate of p21N-ras. J. Biol. Chem. 261, 10963–10965 ( 1986).

    CAS  Google Scholar 

  33. Beranger, F. et al. Determination of structural requirements for the interaction of Rab6 with RabGDI and Rab geranylgeranyltransferase. J. Biol. Chem. 269, 13637–13643 ( 1994).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Kornfeld for helpful advice and M. Lindsay for technical assistance. This work was supported by grants from the National Health and Medical Research Council of Australia to R.G.P. and J.F.H. J.F.H. is also supported by the Royal Children's Hospital Foundation of Queensland. The Institute of Molecular Bioscience is a Special Research Centre of the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Hancock.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prior, I., Harding, A., Yan, J. et al. GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3, 368–375 (2001). https://doi.org/10.1038/35070050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing