Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A glia-derived acetylcholine-binding protein that modulates synaptic transmission

Abstract

There is accumulating evidence that glial cells actively modulate neuronal synaptic transmission. We identified a glia-derived soluble acetylcholine-binding protein (AChBP), which is a naturally occurring analogue of the ligand-binding domains of the nicotinic acetylcholine receptors (nAChRs). Like the nAChRs, it assembles into a homopentamer with ligand-binding characteristics that are typical for a nicotinic receptor; unlike the nAChRs, however, it lacks the domains to form a transmembrane ion channel. Presynaptic release of acetylcholine induces the secretion of AChBP through the glial secretory pathway. We describe a molecular and cellular mechanism by which glial cells release AChBP in the synaptic cleft, and propose a model for how they actively regulate cholinergic transmission between neurons in the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glial cells cultured with synaptically paired neurons specifically inhibit cholinergic synaptic transmission.
Figure 2: Glial cells detect ACh through a nicotinic ACh receptor.
Figure 3: Characterization of α-bungarotoxin-binding protein from the Lymnaea CNS.
Figure 4: Ligand-binding characteristics of AChBP.
Figure 5: Cellular and subcellular expression of AChBPa, Rhodamine-α-Bgt labelling of the cerebral commissure of the Lymnaea CNS, showing AChBP-containing glial cells.
Figure 6: Glial cells release AChBP. a, Immunoprecipitation of radiolabelled AChBP from the Lymnaea CNS using a polyclonal antibody.
Figure 7: AChBP suppresses cholinergic neurotransmission.
Figure 8: Model of the role of AChBP in neurotransmission.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Data deposits

AChBP Genbank accession number: AF364899.

References

  1. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Tripartite synapses: glia the unacknowledged partner. Trends Neurosci. 22, 208– 215 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Smith, S. J. Do astrocytes process neural information? Prog. Brain Res. 94, 119– 136 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Dani, J. W., Chernjavsky, A. & Smith, S. J. Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8, 429– 440 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Pasti, L., Pozzan, T. & Carmignoto, G. Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J. Biol. Chem. 25, 15203– 15210 (1995).

    Article  Google Scholar 

  5. Parpura, V. et al. Glutamate-mediated astrocyte–neuron signaling. Nature 369, 744– 747 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Nedergaard, M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263, 1768– 1771 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Murphy, T. H., Blatter, L. A., Wier, W. G. & Baraban, J. M. Rapid communication between neurons and astrocytes in primary cortical cultures. J. Neurosci. 13, 2672– 2679 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Newman, E. A. & Zahs, K. R. Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022– 4028 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817– 7830 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cornell-Bell, A. H., Finkbeiner, S. M., Cooper, M. S. & Smith, S. J. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470– 473 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Calegari, F. et al. A regulated secretory pathway in cultured hippocampal astrocytes. J. Biol. Chem. 274, 22539– 22547 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Porter, J. T. & McCarthy, K. D. Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073– 5081 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Araque, A., Parpura, V., Sanzgiri, R. P. & Haydon, P. G. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur. J. Neurosci. 10, 2129– 2141 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Araque, A., Sanzgiri, R. P., Parpura, V. & Haydon, P. G. Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci. 18, 6822– 6829 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang, J., Jiang, L., Goldman, S. A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nature Neurosci. 1, 683– 692 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Jahromi, B. S., Robitaille, R. & Charlton, M. P. Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8, 1069– 1077 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Robitaille, R., Jahromi, B. S. & Charlton, M. P. Muscarinic Ca responses resistant to muscarinic agonists at the perisynaptic Schwann cells at the frog neuromuscular junction. J. Physiol. 504, 337– 347 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robitaille, R. Modulation of synaptic efficacy and synaptic depression by glial cells at the frog neuromuscular junction. Neuron 21, 847– 855 (1998).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  19. Theodosis, D. T. & Poulain, D. A. Activity-dependent neuronal glial and synaptic plasticity in the adult mammalian hypothalamus. Neurosci. 57, 501– 535 (1993).

    Article  CAS  Google Scholar 

  20. Brejc, K. et al. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411, 269– 276 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Feng, Z. P., Klumperman, J., Lukowiak, K. & Syed, N. I. In vitro synaptogenesis between the somata of identified Lymnaea neurons requires protein synthesis but not extrinsic growth factors or substrate adhesion molecules. J. Neurosci. 17, 7839– 7849 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hamakawa, T. et al. Excitatory synaptogenesis between identified Lymnaea neurons requires extrinsic trophic factors and is mediated by receptor tyrosine kinases. J. Neurosci. 19, 9306– 9312 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Woodin, M. A., Hamakawa, T., Takasaki, M., Lukowiak, K. & Syed, N. I. Trophic factor-induced plasticity of synaptic connections between identified Lymnaea neurons. Learn. Mem. 6, 307– 316 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Orr-Urteger, A. et al. Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha bungarotoxin binding sites and hippocampal fast nicotinic currents. J. Neurosci. 17, 9165– 9171 (1997).

    Article  Google Scholar 

  25. Gardner, D. & Kandel, E. R. Interconnections of identified multiaction interneurons in buccal ganglia of aplysia. J. Neurophys. 40, 349– 361 (1977).

    Article  CAS  Google Scholar 

  26. Yeoman, M. S., Parish, D. C. & Benjamin, P. R. A cholinergic modulatory interneuron in the feeding system of the snail, Lymnaea. J. Neurosci. 70, 37– 50 (1993).

    CAS  Google Scholar 

  27. Le Novere, N. & Changeux, J. P. Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 40, 155– 172 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Devillers-Thiery, A., Galzi, J. L., Eiselé, J. L., Bertrand, S. & Changeux, J. P. Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. J. Membrane Biol. 136, 97– 112 (1993).

    Article  CAS  Google Scholar 

  29. Karlin, A. & Akabas, M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 6, 1231– 1244 (1995).

    Article  Google Scholar 

  30. Mehta, A. K. & Ticku, M. K. An update on GABAA receptors. Brain Res. Rev. 2–3, 196– 217 (1999).

    Article  Google Scholar 

  31. Betz, H. et al. Structure and functions of inhibitory and excitatory glycine receptors. Annu. NY Acad. Sci. 868, 667– 676 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Corringer, P. J., Le Novere, N. & Changeux, J. P. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431– 458 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Drisdel, R. C. & Green, W. N. Neuronal α-Bungarotoxin receptors are α7 subunit homomers. J. Neurosci. 20, 133– 139 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Green, W. N. Channel assembly: creating structures that function. J. Gen. Physiol. 113, 163– 169 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verall, S. & Hall, Z. W. The N-terminal domain of the acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly. Cell 68, 23– 31 (1992).

    Article  Google Scholar 

  36. Wang, Z. Z., Hardy, S. F. & Hall, Z. W. Assembly of the nicotinic acetylcholine receptor. The first transmembrane domains of truncated alpha and delta subunits are required for heterodimer formation in vivo. J. Biol. Chem. 271, 27575– 27584 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Wells, G. B., Anand, R., Wang, F. & Lindstrom, J. Water-soluble nicotinic acetylcholine receptor formed by alpha7 subunit extracellular domains. J. Biol. Chem. 273, 964– 973 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Corringer, P. J. et al. Critical elements determining diversity in the agonist binding and desensitization of neuronal nicotinic acetylcholine receptors. J. Neurosci. 18, 648– 657 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Badio, B. & Daly, J. W. Epibatidine, a potent analgetic and nicotinic agonist. Mol. Pharmacol. 45, 563– 569 (1994).

    CAS  PubMed  Google Scholar 

  40. Groebe, D. R. & Abramson, S. N. Lophotoxin is a slow binding irreversible inhibitor of nicotinic acetylcholine receptors. J. Biol. Chem. 270, 281– 286 (1995).

    Article  PubMed  Google Scholar 

  41. Edelstein, S. J. & Bardsley, W. G. Contributions of individual molecular species to the Hill coefficient for ligand binding by an oligomeric protein. J. Mol. Biol. 267, 10– 16 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Zwart, R. & Vijverberg, H. P. Potentiation and inhibition of neuronal nicotinic receptors by atropine: competitive and noncompetitive effects. Mol. Pharmacol. 52, 886– 895 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Verbitsky, M., Rothlin, C. V., Katz, E. & Belen Elgoyhen, A. Mixed nicotinic–muscarinic properties of the alpha9 nicotinic cholinergic receptor. Neuropharmacology 39, 2515– 2524 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Whatey, J. C., Nass, M. M. & Lester, H. A. Numerical reconstruction of the quantal event at nicotinic synapses. Biophys. J. 27, 145– 164 (1979).

    Article  Google Scholar 

  45. Land, B. R., Salpeter, E. E. & Salpeter, M. M. Kinetic parameters for acetylcholine interaction in intact neuromuscular junction. Proc. Natl Acad. Sci. USA 78, 7200– 7204 (1981).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katz, B. & Miledi, R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. 231, 549– 574 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuffler, S. W. & Yoshikama, D. The number of transmitter molecules in a quantum: an estimate from iontophoretic application of acetylcholine at the neuromuscular synapse. J. Physiol. 1, 465– 482 (1975).

    Article  Google Scholar 

  48. Syed, N. I., Bulloch, A. G. & Lukowiak, K. In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science 250, 282– 285 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Van Minnen, J., Van De Haar, C., Raap, A. K. & Vreugdenhil, E. Localization of ovulation hormone-like neuropeptide in the central nervous system of the snail Lymnaea stagnalis by means of immunocytochemistry and in situ hybridization. Cell Tissue Res. 251, 477– 484 (1988).

    Article  CAS  PubMed  Google Scholar 

  50. Slot, J. W., Geuze, H. J. & Weerkamp, A. J. Localization of macromolecular components by application of the immunogold technique on cryosectioned bacteria. Methods Microbiol. 20, 211– 236 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. N. Abramson for bipinnatin-B; E. R. Van Kesteren and Broers-Vendrig for immunocytochemistry; and F. v. Huizen for suggestions and reagents for the pharmacological experiments. A.B.S. and K.B. were supported by a grant of the Organization for Applied Research (STW). N.I.S. is an Alberta Heritage Foundation for Medical Research senior scholar and was supported by CIHR and NSERC (Canada), and by the Dutch NWO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to August B. Smit.

Supplementary information

Figure 1.

(GIF 12.3 KB)

Bippinatin-b binding on AChBP. a, Incubation of ACh, Bippinatin-b toxin, and AChBP (ratio toxin to AChBP 10:1), shows a dose dependent competition of ACh and the toxin for binding to AChBP. The incubation time chosen allows for half maximal binding of the toxin in the absence of ACh.

Figure 1.

(GIF 12.2 KB)

b, At the 50% bound state of toxin to AChBP, mass spectrometry is performed to determine covalent binding of Bippinatin-b. AChBP was digested with Endo-Lys C, and the mass of the peptide fragments A and B that were predicted to bind Bipinnatin-b (amino acids 181 to 203/204) was determined. A mass increase of the AChBP fragment of 430.1 Da was observed, corresponding well to the calculated mass of Bipinnatin-b of 431 Da, indicating that the toxin also binds to Tyr-185 in AChBP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smit, A., Syed, N., Schaap, D. et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411, 261–268 (2001). https://doi.org/10.1038/35077000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35077000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing