Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pharmacology of GABA receptor CI channels in rat retinal bipolar cells

Abstract

γ-AMlNOBUTYRlC acid (GABA), a major inhibitory neurotransmitter in the mammalian nervous system, is known to operate bicuculline-sensitive CI channels through GABAA receptors and bicuculline-insensitive cation channels through GABAB receptors1,2. Recent observations indicate that the retina may contain GABA receptors with unusual pharmacological properties3–5. Here we report that GABA gates bicuculline-insensitive CI channels in rod bipolar cells of the rat retina, which were not modulated by flunitrazepam, pentobarbital and alphaxalone and were only slightly blocked by picrotoxinin. Moreover, the GABAB receptor agonist baclofen, and the antagonist 2-hydroxysaclofen had no effect. The underlying single-channel conductance was 7 pS and the open time 150 ms. These values are clearly different from those obtained for GABAA receptor channels recorded in other neurons of the same preparation, and in other parts of the brain1,6–8. The bicuculline- and baclofen-insensitive GABA receptors were activated selectively by the GABA analogue cis-4-aminocrotonic acid (CACA)9. Hence they may be similar to those receptors termed GABAC receptors10.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bormann, J. Trends Neurosci. 11, 112–116 (1988).

    Article  CAS  Google Scholar 

  2. Sivilotti, L. & Nistri, A. Prog. Neurobiol. 36, 35–92 (1991).

    Article  CAS  Google Scholar 

  3. Polenzani, L., Woodward, R. M. & Miledi, R. Proc. natn. Acad. Sci. U.S.A. 88, 4318–4322 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Cutting, G. R. et al. Proc. natn. Acad Sci. U.S.A. 88, 2673–2677 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Shimada, S., Cutting, G. & Uhl, G. R. Molec. Pharmac. 41, 683–687 (1992).

    CAS  Google Scholar 

  6. Bormann, J., Hamill, O. P. & Sakmann, B. J. Physiol., Lond. 385, 243–286 (1987).

    Article  CAS  Google Scholar 

  7. Bormann, J. & Clapham, D. E. Proc. natn. Acad. Sci. U.S.A. 82, 2168–2172 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Bormann, J. & Kettenmann, H. Proc. natn. Acad. Sci. U.S.A. 85, 9336–9340 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Johnston, G. A. R. et al. J. Neurochem. 24, 157–160 (1975).

    Article  CAS  Google Scholar 

  10. Drew, C. A., Johnston, G. A. R. & Weatherby, R. P. Neurosci. Lett. 52, 317–321 (1984).

    Article  CAS  Google Scholar 

  11. Gähwiler, B. H. Neuroscience 11, 751–760 (1984).

    Article  Google Scholar 

  12. Feigenspan, A., Bormann, J. & Wässle, H. Visual Neurosci. (in the press).

  13. Wäassle, H., Yamashita, M., Greferath, U., Grünert, U. & Müller, F. Visual Neurosci. 7, 99–112 (1991).

    Article  Google Scholar 

  14. Shirasaki, T., Klee, M. R., Nakaye, T. & Akaike, N. Brain Res. 561, 77–83 (1991).

    Article  CAS  Google Scholar 

  15. Lipton, S. A. Visual Neurosci. 3, 275–279 (1989).

    Article  CAS  Google Scholar 

  16. Karschin, A. & Wässle, H. J. Neurophysiol. 63, 860–876 (1990).

    Article  CAS  Google Scholar 

  17. Suzuki, S., Tachibana, M. & Kaneko, A. J. Physiol. 421, 645–662 (1990).

    Article  CAS  Google Scholar 

  18. Yeh, H. H., Lee, M. B. & Cheun, J. E. Visual Neurosci. 4, 349–357 (1990).

    Article  CAS  Google Scholar 

  19. Schmieden, V., Grenningloh, G., Schofield, P. R. & Betz, H. EMBO J. 8, 695–700 (1989).

    Article  CAS  Google Scholar 

  20. Sontheimer, H. et al. Neuron 2, 1491–1497 (1989).

    Article  CAS  Google Scholar 

  21. Pribilla, I., Takagi, T., Langosch, D., Bormann, J. & Betz, H. EMBO J. (in the press).

  22. Becker, C. M. in Handbook of Experimental Pharmacology (eds Herken, H. & Hucho, F.) Vol. 102, 539–575 (Springer, Berlin, 1992).

    Google Scholar 

  23. Grenningloh, G. et al. EMBO J 9, 771–776 (1990).

    Article  CAS  Google Scholar 

  24. Malosio, M.-L., Marquèze-Pouey, B., Kuhse, J. & Betz, H. EMBO J. 10, 2401–2409 (1991).

    Article  CAS  Google Scholar 

  25. Hamill, O. P., Marty, A. Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  26. Colquhoun, D. & Sigworth, F. J. in Single-Channel Recording (eds Sakmann, B. & Neher, E.) 191–263 (Plenum, New York, 1983).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feigenspan, A., Wässle, H. & Bormann, J. Pharmacology of GABA receptor CI channels in rat retinal bipolar cells. Nature 361, 159–162 (1993). https://doi.org/10.1038/361159a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361159a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing