Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors

Abstract

UNDERSTANDING the mechanisms of long-term potentiation (LTP) should provide insights into the molecular basis of learning and memory in vertebrates. lonotropic glutamate receptors play a central role in LTP; AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) receptors and NMDA (N-methyl-D-aspar-tate) receptors mediate synaptic responses that are enhanced in LTP and, in addition, NMDA receptors are necessary for the induction of LTP in most pathways1. There is also circumstantial evidence that metabotropic glutamate receptors (mGluRs) may be involved in LTP because the specific mGluR agonist aminocyc-lopentane dicarboxylate can augment tetanus-induced LTP2 and, under certain circumstances, can itself induce a slow-onset potentiation3,4. But the absence of any effective mGluR antagonist has prevented the determination of whether mGluRs are involved in the induction of tetanus-induced LTP. We report here that (RS)-α-methyl-4-carboxyphenylglycine is a specific mGluR antagonist in the hippocampus and have used this compound to examine the nature of the involvement of mGluRs in LTP. We show that synaptic activation of mGluRs is necessary for the induction of both NMDA receptor-dependent and NMDA receptor-independent forms of LTP in the hippocampus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bliss, T. V. P. & Collingridge, G. L. Narure 361, 31–39 (1993).

    ADS  CAS  Google Scholar 

  2. McGuinness, N., Anwyl, R. & Rowan, M. Eur. J. Pharmac. 197, 231–232 (1991).

    Article  CAS  Google Scholar 

  3. Zheng, F. & Gallagher, J. P. Neuron 9, 163–172 (1992).

    Article  CAS  Google Scholar 

  4. Bortolotto, Z. A. & Collingridge, G. L. Neuropharmacology 32, 1–9 (1993).

    Article  CAS  Google Scholar 

  5. Reymann, K. G. & Matthies, H. Neurosci. Lett. 98, 166–171 (1989).

    Article  CAS  Google Scholar 

  6. Izumi, Y., Clifford, D. B. & Zorumski, C. F. Neurosci. Lett 122, 187–190 (1991).

    Article  CAS  Google Scholar 

  7. Behnisch, T., Fjodorow, K. & Reymann, K. G. NeuroReport 2, 386–388 (1991).

    Article  CAS  Google Scholar 

  8. Ito, I. & Sugiyama, H. NeuroReport 2, 333–336 (1991).

    Article  CAS  Google Scholar 

  9. Stratton, K. R., Worley, P. F. & Baraban, J. M. Eur. J. Pharmac. 186, 357–361 (1990).

    Article  CAS  Google Scholar 

  10. Charpak, S. & Gahwiler, B. H. Proc. R. Soc. B243, 221–226 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Hu, G.-Y. & Storm, J. F. Acta physiol. scand. 145, 187–191 (1992).

    Article  CAS  Google Scholar 

  12. Desai, M. A., Smith, T. S. & Conn, J. P. Synapse 12, 206–213 (1992).

    Article  CAS  Google Scholar 

  13. Eaton, S. A. et al. Eur. J. Pharmac. 244, 195–197 (1993).

    Article  CAS  Google Scholar 

  14. Aramori, I. & Nakanishi, S. Neuron 8, 757–767 (1992).

    Article  CAS  Google Scholar 

  15. Irving, A. J., Schofield, G., Watkins, J. C., Sunter, D. C. & Collingridge, G. L. Eur. J. Pharmac. 186, 363–365 (1990).

    Article  CAS  Google Scholar 

  16. Stratton, K. R., Worley, P. F. & Baraban, J. M. Eur. J. Pharmac. 173, 235–237 (1989).

    Article  CAS  Google Scholar 

  17. Stanton, P. K., Chattarji, S. & Sejnowski, T. J. Neurosci. Lett. 127, 61–66 (1991).

    Article  CAS  Google Scholar 

  18. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., London. 334, 33–46 (1983).

    Article  CAS  Google Scholar 

  19. Harris, E. W. & Cotman, C. W. Neurosci. Lett. 70, 132–137 (1986).

    Article  CAS  Google Scholar 

  20. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. Nature 334, 250–252 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Lovinger, D. M., Wong, K. L., Murakami, K. & Routtenberg, A. Brain Res. 436, 177–183 (1987).

    Article  CAS  Google Scholar 

  22. Malinow, R., Madison, D. V. & Tsien, R. W. Science 245, 862–866 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Reymann, K. G., Frey, U., Jork, R. & Matthies, H. Brain Res. 440, 305–314 (1988).

    Article  CAS  Google Scholar 

  24. Sladeczek, F., Pin, J-P., Recasens, M., Bockaert, J. & Weiss, S. Nature 317, 717–719 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Nicoletti, F. et al. J. Neurochem. 46, 40–46 (1986).

    Article  CAS  Google Scholar 

  26. Harvey, J., Frenguelli, B. G., Sunter, D. C., Watkins, J. C. & Collingridge, G. L. Br. J. Pharmac. 104, c79 (1991).

    Google Scholar 

  27. Kelso, S. R., Nelson, T. E. & Leonard, J. P. J. Physiol., Lond 449, 705–718 (1992).

    Article  CAS  Google Scholar 

  28. Aniksztejn, L., Otani, S. & Ben-Ari, Y. Eur. J. Neurosci. 4, 500–505 (1992).

    Article  Google Scholar 

  29. Malenka, R. C. Neuron 6, 53–60 (1991).

    Article  CAS  Google Scholar 

  30. Dumuis, A., Pin, J. P., Oomagari, K., Sebben, M. & Bockaert, J. Nature 347, 182–184 (1990).

    Article  ADS  CAS  Google Scholar 

  31. Irving, A. J., Collingridge, G. L. & Schofield, J. G. Cell Calcium 13, 293–301 (1992).

    Article  CAS  Google Scholar 

  32. Martin, M. R. Neuropeptides 4, 45–30 (1983).

    Article  CAS  Google Scholar 

  33. Bramham, C. R. Neurochem. Int. 20, 441–445 (1992).

    Article  CAS  Google Scholar 

  34. Derrick, B. E., Rodriguez, S. B., Lieberman, D. N. & Martinez, J. L. Jr, J. Pharmac. exp. Ther. 263, 725–733 (1992).

    CAS  Google Scholar 

  35. Blanton, M. G., LoTurco, J. J. & Kreigstein, A. R. J. neurosci. Meth. 30, 203–210 (1989).

    Article  CAS  Google Scholar 

  36. Davies, S. N. & Collingridge, G. L. Proc. R. Soc. B236, 373–384 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashir, Z., Bortolotto, Z., Davies, C. et al. Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350 (1993). https://doi.org/10.1038/363347a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363347a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing