Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease

Abstract

IN eukaryotes nucleotide excision repair of DNA damaged by ultraviolet radiation requires several gene products; defects in this process result in the cancer-prone syndrome xeroderma pigmento-sum (XP) in humans1,2. TheRAD2 gene is one of at least seven genes indispensable for excision repair in the yeast Saccharomyces cerevisiae2, and its encoded protein shares remarkable homology with the XP group-G gene product3. Here we overproduce the RAD2-encoded protein in S. cerevisiae, purify it to near homogeneity, and show that RAD2 protein in the presence of magnesium degrades circular single-stranded DNA. The RAD2 endonuclease is specific for single-stranded DNA as it does not act on doublestranded DNA. Given the absolute requirement for RAD2 in the incision step of excision repair, our findings directly implicate RAD2 protein and its human homologue XPG protein as a catalytic component that incises the damaged DNA strand during excision repair. Furthermore, our results indicate that eukaryotes probably employ two distinct endonuclease activities to mediate the dual incision at the damage site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cleaver, J. E. & Kraemer, K. H. in The Metabolic Basis of Inherited Disease 6th edn (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 2949–2971 (McGraw-Hill, New York, 1989).

    Google Scholar 

  2. Prakash, S., Sung, P. & Prakash, L. A. Rev. Genet. 27, 33–70 (1993).

    Article  CAS  Google Scholar 

  3. Scherly, D. et al. Nature 363, 182–185 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Kingsman, S. M. et al. Meth. Enzym. 152, 330–341 (1987).

    Article  Google Scholar 

  5. Madura, K. & Prakash, S. J. Bact. 166, 914–933 (1986).

    Article  CAS  Google Scholar 

  6. Bailly, V., Sommers, C. H., Sung, P., Prakash, L. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 89, 8273–8277 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Huang, J. C., Svoboda, D. L., Reardon, J. T. & Sancar, A. Proc. natn. Acad. Sci. U.S.A. 89, 3664–3668 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Svoboda, D. L., Taylor, J. S., Hearst, J. E. & Sancar, A. J. biol. Chem. 268, 1931–1936 (1993).

    CAS  PubMed  Google Scholar 

  9. Sung, P., Reynolds, P., Prakash, L. & Prakash, S. J. biol. Chem. 268, 26391–26399 (1993).

    CAS  PubMed  Google Scholar 

  10. Tomkinson, A. E., Bardwell, A. J., Bardwell, L., Tappe, N. J. & Friedberg, E. C. Nature 362, 860–862 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Orren, D. K. & Sancar, A. Proc. natn. Acad. Sci. U.S.A. 86, 5237–5241 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Sung, P., Prakash, L., Matson, S. W. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 84, 8951–8955 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Proc. natn. Acad. Sci. U.S.A. 90, 5433–5437 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Gulyas, K. D. & Donahue, T. F. Cell 69, 1031–1042 (1992).

    Article  CAS  Google Scholar 

  15. Park, E. et al. Proc. natn. Acad. Sci. U.S.A. 89, 11416–11420 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Sung, P., Prakash, L. & Prakash, S. Nature 355, 743–745 (1992).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habraken, Y., Sung, P., Prakash, L. et al. Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature 366, 365–368 (1993). https://doi.org/10.1038/366365a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/366365a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing