Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ribozyme-mediated repair of defective mRNA by targeted trans-splicing

Abstract

RIBOZYMES can be targeted to cleave specific RNAs1–8, which has led to much interest in their potential as gene inhibitors3,9,10. Such fra/is-cleaving ribozymes join a growing list of agents that stop the flow of genetic information11,12. Here we describe a different application of ribozymes for which they may be uniquely suited. By targeted trans-splicing, a ribozyme can replace a defective por-tion of RNA with a functional sequence. The self-splicing intron from Tetrahymena thermophila13 was previously shown to mediatetrans-splicing of oligonucleotides in vitro14,15. As a model system for messenger RNA repair, this group I intron was re-engineered to regenerate the proper coding capacity of short, truncated lacZ transcripts. Trans-splicing was efficient in vitro and proceeded in Escherichia coli to generate translatable lacZ messages. Targeted frans-splicing represents a general means of altering the sequence of specified transcripts and may provide a new approach to the treatment of many genetic diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zaug, A. J., Been, M. D. & Cech, T. R. Nature 324, 429–433 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Uhlenbeck, O. C. Nature 328, 596–600 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Haseloff, J. & Gerlach, W. L. Nature 334, 585–591 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Feldstein, P. A., Buzayan, J. M. & Bruening, G. Gene 2, 53–61 (1989).

    Article  Google Scholar 

  5. Hampel, A., Tritz, R., Hicks, M. & Cruz, P. Nucleic Acids Res. 18, 299–304 (1990).

    Article  CAS  Google Scholar 

  6. Chowrira, B. M. & Burke, J. M. Biochemistry 30, 8518–8522 (1991).

    Article  CAS  Google Scholar 

  7. Forster, A. C. & Altman, S. Science 249, 783–786 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Perrotta, A. T. & Been, M. D. Biochemistry 31, 16–21 (1992).

    Article  CAS  Google Scholar 

  9. Cech, T. R. J. Am. med. Assoc. 260, 3030–3034 (1988).

    Article  CAS  Google Scholar 

  10. Rossi, J. J. Curr. Opin. Biotech. 3, 3–7 (1992).

    Article  CAS  Google Scholar 

  11. Gilboa, E. & Smith, C. Trends Genet. 10, 139–144 (1994).

    Article  CAS  Google Scholar 

  12. Yu, M., Poeschla, E. & Wong-Staal, F. Gene Ther. 1, 13–26 (1994).

    CAS  PubMed  Google Scholar 

  13. Cech, T. R. A. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  Google Scholar 

  14. Inoue, T., Sullivan, F. X. & Cech, T. R. Cell 43, 431–437 (1985).

    Article  CAS  Google Scholar 

  15. Been, M. D. & Cech, T. R. Cell 47, 207–216 (1986).

    Article  CAS  Google Scholar 

  16. Price, J. V. & Cech, T. R. Science 228, 719–722 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Waring, R. B. et al. Cell 40, 371–380 (1985).

    Article  CAS  Google Scholar 

  18. Zaug, A. J., Grosshans, C. A. & Cech, T. R. Biochemistry 27, 8924–8931 (1988).

    Article  CAS  Google Scholar 

  19. Tabor, S. & Richardson, C. C. Proc. natn. Acad. Sci. U.S.A. 82, 1074–1078 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Yanisch-Perron, C., Vieira, J. & Messing, J. Gene 33, 103–119 (1985).

    Article  CAS  Google Scholar 

  21. Waring, R. B., Towner, P., Minter, S. & Davies, R. W. Nature 321, 133–139 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Sullenger, B. A. & Cech, T. R. Science 262, 1566–1569 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Cech, T. R., Herschlag, D., Piccirilli, J. A. & Pyle, A. M. J. biol. Chem. 267, 17479–17482 (1992).

    CAS  Google Scholar 

  24. Herschlag, D. Proc. natn. Acad. Sci. U.S.A. 88, 6921–6925 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Morgan, R. A. & Anderson, W. F. A. Rev. Biochem. 62, 191–217 (1993).

    Article  CAS  Google Scholar 

  26. Malim, M. H., Bohnlein, E., Hauber, J. & Cullen, B. R. Cell 58, 205–214 (1989).

    Article  CAS  Google Scholar 

  27. Tronom, D., Feinberg, M. B. & Baltimore, D. Cell 59, 113–120 (1989).

    Article  Google Scholar 

  28. Ford, E. & Ares, M. Jr Proc. natn. Acad. Sci. U.S.A. 91, 3117–3121 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Tabor, S. in Current Protocols in Molecular Biology (eds Ausubel, F. A. et al.) 16.2.1–16.2.11 (Greene/Wiley, New York, 1990).

    Google Scholar 

  30. Miller, J. in Experiments in Molecular Genetics 352–355 (Cold Spring Harbor Laboratory Press, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullenger, B., Cech, T. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 371, 619–622 (1994). https://doi.org/10.1038/371619a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371619a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing