Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

RGS8 accelerates G-protein-mediated modulation of K+currents

Abstract

Transmembrane signal transduction via heterotrimeric G proteins is reported to be inhibited by RGS (regulators of G-protein signalling) proteins1,2,3,4. These RGS proteins work by increasing the GTPase activity of G protein α-subunits (Gα), thereby driving G proteins into their inactive GDP-bound form5,6,7. However, it is not known how RGS proteins regulate the kinetics of physiological responses that depend on G proteins. Here we report the isolation of a full-length complementary DNA encoding a neural-tissue-specific RGS protein, RGS8, and the determination of its function. We show that RGS8 binds preferentially to the α-subunits Gαo and Gαi3 and that it functions as a GTPase-activating protein (GAP). When co-expressed in Xenopus oocytes with a G-protein-coupled receptor and a G-protein-coupled inwardly rectifying K+channel (GIRK1/2), RGS8 accelerated not only the turning off but also the turning on of the GIRK1/2 current upon receptor stimulation, without affecting the dose–response relationship. We conclude that RGS8 accelerates the modulation of G-protein-coupled channels and is not just a simple negative regulator. This property of RGS8 may be crucial for the rapid regulation of neuronal excitability upon stimulation of G-protein-coupled receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection and characterization of RGS8.
Figure 2: Interaction of RGS8 with Gα subunit.
Figure 3: Effects of RGS8 on GTP hydrolysis of Gαo.
Figure 4: Effects of RGS8 on turning-on and turning-off kinetics, and on the dose–response relationships of the G-protein-coupled inwardly rectifying K+channel (GIRK1/2) current upon stimulation of the receptors.

Similar content being viewed by others

References

  1. Koelle, M. R. A new family of G-protein regulators—the RGS protein. Curr. Opin. Cell Biol. 9, 143–147 (1997).

    Article  CAS  Google Scholar 

  2. Dohlman, H., Apaniesk, D., Chen, Y., Song, J. & Dlusskem, D. Inhibition of G-protein signaling by dominant gain-of-function mutation in Sst2p, a pheromone desensitization factor in Saccharomyces cerevisiae. Mol. Cell Biol. 15, 3635–3643 (1995).

    Article  CAS  Google Scholar 

  3. Koelle, M. R. & Horvitz, H. R. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell 84, 115–125 (1996).

    Article  CAS  Google Scholar 

  4. Druey, K. M., Blumer, K. J., Kang, V. H. & Kehrl, J. H. Inhibition of G-protein-mediated MAP kinase activation by a new mammalian gene family. Nature 379, 742–746 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Berman, D. M., Wilkie, T. M. & Gilman, A. G. GAlP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 86, 445–452 (1996).

    Article  CAS  Google Scholar 

  6. Watson, N., Linder, M. E., Druey, K. M., Kehrl, J. H. & Blumer, K. J. RGS family members: GTPase-activating proteins for heterotrimeric G-protein α-subunits. Nature 383, 172–175 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Hunt, T. W., Fields, T. A., Casey, P. J. & Peralta, E. G. RGS10 is a selective activator of Gαi GTPase activity. Nature 383, 175–177 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Jones-Villeneuve, E. M. V., McBurney, M. W., Rogers, K. A. & Kalnins, V. I. Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J. Cell Biol. 94, 253–262 (1982).

    Article  CAS  Google Scholar 

  9. Chen, C.-K., Wieland, T. & Simon, M. I. RGS-r, a retinal specific RGS protein, binds an intermediate conformation of transducin and enhances recycling. Proc. Natl Acad. Sci. USA 93, 12885–12889 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Siderovski, D. P., Heximer, S. P. & Forsdyke, D. R. Ahuman gene encoding a putative basic helix-loop-helix phosphorprotein whose mRNA increases rapidly in cycloheximide-treated blood mononuclear cells. DNA Cell Biol. 13, 125–147 (1994).

    Article  CAS  Google Scholar 

  11. Reuveny, E. et al. Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature 370, 143–146 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Wickman, K. & Clapham, D. E. Ion channel regulation by G proteins. Physiol. Rev. 75, 865–885 (1995).

    Article  CAS  Google Scholar 

  13. Werner, P., Hussy, N., Buell, G., Jones, K. A. & North, R. A. D2, D3, and D4 dopamine receptors coupled to G protein-regulated potassium channels in Xenopus oocytes. Mol. Pharmacol. 49, 656–661 (1996).

    CAS  PubMed  Google Scholar 

  14. Saugstad, J. A., Segerson, T. P. & Westbrook, G. L. Metabotropic glutamate receptors activate G-protein-coupled inwardly rectifying potassium channels in Xenopus oocytes. J. Neurosci. 16, 5979–5985 (1996).

    Article  CAS  Google Scholar 

  15. Sodickson, D. L. & Bean, B. P. GABABreceptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. J. Neurosci. 15, 6374–6385 (1996).

    Article  Google Scholar 

  16. Lesage, F. et al. Cloning provides evidence for a family of inward rectifier and G-protein coupled K + channels in the brain. FEBS Lett. 353, 37–42 (1994).

    Article  CAS  Google Scholar 

  17. Breitwieser, G. E. & Szabo, G. Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues. J. Gen. Physiol. 91, 469–493 (1988).

    Article  CAS  Google Scholar 

  18. Shui, Z., Boyett, M. R., Zang, W. J., Haga, T. & Kameyama, K. Receptor kinase-dependent desensitization of the muscarinic K+ current in rat atrial cells. J. Physiol. (Lond.) 487, 359–366 (1995).

    Article  Google Scholar 

  19. Kubo, Y., Reuveny, E., Slesinger, P. A., Jan, Y. N. & Jan, L. Y. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 364, 802–806 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Lesage, F. et al. Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem. 270, 28660–28667 (1995).

    Article  CAS  Google Scholar 

  21. Velimirovic, B. M., Gordon, E. A., Lim, N. F., Navarro, B. & Clapham, D. E. The K+ channel inward rectifier subunits form a channel similar to neuronal G protein-gated K+ channel. FEBS Lett. 379, 31–37 (1996).

    Article  CAS  Google Scholar 

  22. Krapivinsky, G. et al. The G-protein-gated atrial K+ channel IKAChis a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374, 135–141 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Asano, T., Kamiya, N., Morishita, R. & Kato, K. Immunoassay for the βγ subunits of GTP-binding proteins and their regional distribution in bovine brain. J. Biochem. 103, 950–953 (1988).

    Article  CAS  Google Scholar 

  24. Abe, H., Saitoh, O., Nakata, H., Yoda, A. & Matsuda, R. Expression of neurofilament proteins in proliferating C2C12 mouse skeletal muscle cells. Exp. Cell Res. 229, 48–59 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Lazdunski for GIRK2 cDNA, A. Connolly for m2 muscarinic receptor and D2 dopamine receptor cDNA, K. Yamagata for the cDNA library, M. Odagiri for technical assistance. This work is supported by research grants from the Ministry of Education, Science, Sports and Culture of Japan (to O.S.) and from the Human Frontier Science Program Organization (to Y.K.) and by a grant-in-aid for scientific research on priority area of “channel-Transporter Correlation” (to Y.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Osamu Saitoh or Hiroyasu Nakata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, O., Kubo, Y., Miyatani, Y. et al. RGS8 accelerates G-protein-mediated modulation of K+currents. Nature 390, 525–529 (1997). https://doi.org/10.1038/37385

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/37385

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing