Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protease-activated receptor 3 is a second thrombin receptor in humans

Abstract

Thrombin is a coagulation protease that activates platelets, leukocytes, endothelial and mesenchymal cells at sites of vascular injury, acting partly through an unusual proteolytically activated G-protein-coupled receptor1–3. Knockout of the gene encoding this receptor provided definitive evidence for a second thrombin receptor in mouse platelets and for tissue-specific roles for different thrombin receptors4. We now report the cloning and characterization of a new human thrombin receptor, designated protease-activated receptor 3 (PAR3). PAR3 can mediate throm-bin-triggered phosphoinositide hydrolysis and is expressed in a variety of tissues, including human bone marrow and mouse megakaryocytes, making it a candidate for the sought-after second platelet thrombin receptor. PAR3 provides a new tool for understanding thrombin signalling and a possible target for therapeutics designed selectively to block thrombotic, inflammatory and proliferative responses to thrombin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fenton, J. W. Regulation of thrombin generation and functions. Sem. Hemostas. Thrombos. 14, 234–240 (1988).

    Article  CAS  Google Scholar 

  2. Coughlin, S. R. Thrombin receptor function and cardiovascular disease. Trends Cardiovas. Med. 4, 77–83 (1993).

    Article  Google Scholar 

  3. Vu, T.-K. H., Hung, D. T., Wheaton, V. I. & Coughlin, S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanisms of recetor activation. Cell 64, 1057–1068 (1991).

    Article  CAS  Google Scholar 

  4. Connolly, A., Ishihara, H., Kahn, M., Farese, R. V. Jr & Coughlin, S. R. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381, 516–519 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. Molecular cloning of a potential novel proteinase activated receptor. Proc. Natl Acad. Sci. USA 91, 9208–9212 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Rydel, T. J. et al. The structure of a complex of recombinant hirudin and human α-thrombin. Sceince 249, 277–280 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Vu, T.-K. H., Wheaton, V. I., Hung, D. T. & Coughlin, S. R. Domains specifying thrombin-receptor interaction. Nature 353, 674–677 (1991).

    Article  ADS  CAS  Google Scholar 

  8. Liu, L., Vu, T.-K. H., Esmon, C. T. & Coughlin, S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J. Biol. Chem. 266, 16977–16980 (1991).

    CAS  PubMed  Google Scholar 

  9. Mathews, I. I. et al. Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33, 3266–3279 (1994).

    Article  CAS  Google Scholar 

  10. Ishii, K., Gerszten, R., Zheng, Y.-W., Turck, C. W. & Coughlin, S. R. Determinants of thrombin receptor cleavage: Receptor domains involved, specificity, and role of the P3 aspartate. J. Biol. Chem. 270, 16435–16440 (1995).

    Article  CAS  Google Scholar 

  11. Chen, J., Ishii, M., Wang, L., Ishii, K. & Coughlin, S. R. Thrombin receptor activation: Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J. Biol. Chem. 269 16041–16045 (1994).

    CAS  PubMed  Google Scholar 

  12. Gerszten, R. E. et al. The thrombin receptor's specificity for agonist peptide is defined by its extracellular surface. Nature 368, 648–651 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Amatruda, T. T., Steele, D. A., Slepak, V. Z. & Simon, M. I. Gαl9, a G protein α subunit specifically expressed in hematopoietic cells. J. Biol. Chem. 88, 5587–5591 (1991).

    CAS  Google Scholar 

  14. Kettner, C. & Shaw, E. D-phe-pro-argCH2Cl: a selective affinity label for thrombin. Thrombosis Res. 14, 969–973 (1979).

    Article  CAS  Google Scholar 

  15. Rydel, T. J. et al. Crystallographic structure of human γ-thrombin. J. Biol. Chem. 269, 22000–22006 (1994).

    CAS  PubMed  Google Scholar 

  16. Skrzypczak, J. E. et al. Structure of the hirugen and hirulog 1 complexes of α-thrombin. J. Mol. Biol. 221, 1379–1393 (1991).

    Article  Google Scholar 

  17. Scarborough, R. M. et al. Tethered ligand agonist peptides: structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist fucntion. J. Biol. Chem. 267, 13146–13149 (1992).

    CAS  PubMed  Google Scholar 

  18. Hung, D. T., Vu, T.-K. H., Wheaton, V. I., Ishii, K. & Coughlin, S. R. The cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. Blocking antiserum to the thrombin receptor's hirudin-like domain. J. Clin. Invest. 89, 1350–1353 (1992).

    Article  CAS  Google Scholar 

  19. Brass, L. F. et al. Structure and function of the human paltelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J. Biol. Chem. 267, 13795–13798 (1992).

    CAS  PubMed  Google Scholar 

  20. Kinlough Rathbone, R., Perry, D. W., Guccione, M. A., Rand, M. L. & Packham, M. A. Degranulation of human paltelets by the thrombin receptor peptide SFLLRN: omparison with degranulation by thrombin. Thromb. Haemost. 70, 1019–1023 (1993).

    Article  CAS  Google Scholar 

  21. Goodwin, C. A. et al. Thrombin receptor activating peptide does not stimulate platelet procoagulant activity. Biochem. Biophys. Res. Commun. 202, 321–327 (1994).

    Article  CAS  Google Scholar 

  22. Lau, L. F., Pumiglia, K., Cote, Y. P. & Feinstein, M. B. Thrombin-receptor agonist peptides, in contrast to thrombin itself, are not full agonists for activation and signal transduction in human platelets in the absence of platelet-derived secondary mediators. Biochem. J. 303 391–400 (1994).

    Article  CAS  Google Scholar 

  23. Kramer, R. M. et al. Differential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin receptor agonist peptide in human platelets, evidence for activation of cPLA2 independent of the mitogen-activated protein kinases ERK1/2. J. Biol. Chem. 270, 14816–14823 (1995).

    Article  CAS  Google Scholar 

  24. Connolly, T. M. et al. Species variability in platelet and other cellular responsiveness to thrombin receptor-derived peptides. Thromb. Haemost. 72, 627–633 (1994).

    Article  CAS  Google Scholar 

  25. Derian, C. K., Santulli, R. J., Tomko, K. A., Haertlein, B. J. & Andrade-Gordon, P. Species differences in paltelet responses to thrombin and SFLLRN. Receptor-mediated calcium mobilization and aggregation and regulation by protein kinases. Thrombosis Res. 6, 505–519 (1995).

    Article  Google Scholar 

  26. Probst, W. C., Snyder, L. A., Schuster, D. I., Brosius, J. & Sealfon, S. C. Sequence alignment of the G-protein coupled receptor superfamily. DNA and Cell 11, 1–20 (1992).

    Article  CAS  Google Scholar 

  27. Ishii, K., Hein, L., Kobilka, B. & Coughlin, S. R. Kinetics of thrombin receptor cleavage on intact cells: relation to signaling. J. Biol. Chem. 268, 9780–9786 (1993).

    CAS  PubMed  Google Scholar 

  28. Williams, J. A., McChesney, D. J., Calayag, M. C., Lingappa, V. R. & Logsdon, C. D. Expression of receptors for cholecystokinin and other Ca2+-mobilizing hormones in Xenopus oocytes. Proc. Natl Acad. Sci. USA 85, 4939–4943 (1988).

    Article  ADS  CAS  Google Scholar 

  29. Nanevicz, T., Wang, L., Chen, M., Ishii, M. & Coughlin, S. R. Activating mutations in the thrombin receptor's agonist recognition domain. Mutations in a G protein-coupled receptor's extracellular domain cause transmembrane signaling. J. Biol. Chem. 271, 702–706 (1996).

    Article  CAS  Google Scholar 

  30. Soifer, S. J., Peters, K. G., O'Keefe, J. & Coughlin, S. R. Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development. Am. J. Pathol. 144, 60–69 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, H., Connolly, A., Zeng, D. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502–506 (1997). https://doi.org/10.1038/386502a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/386502a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing