Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cellular mechanism for anti-analgesic action of agonists of the κ-opioid receptor

Abstract

The analgesic effect of clinically used exogenous opioids, such as morphine, is mediated primarily through μ-opioid receptors1,2,3, but the function of the κ-receptor in opioid analgesia is unclear. Although κ-receptor agonists can produce analgesia4,5, behavioural studies indicate that κ agonists applied intravenously or locally into the spinal cord antagonize morphine analgesia (see refs 4, 6 for reviews). As morphine, a primary μ agonist1, also binds to κ-receptors7 and the analgesic effectiveness of morphine decreases with repeated use (tolerance), it is important to understand the mechanism for the functional interaction between κ- and μ-opioid receptors in the central nervous system. Here we present in vitro electrophysiological and in vivo behavioural evidence that activation of the κ-receptor specifically antagonizes μ-receptor-mediated analgesia. We show that in slice preparations of a rat brainstem nucleus, which is critical for the action of opioids in controlling pain, functional κ- and μ-receptors are each localized on physiologically different types of neuron. Activation of the κ-receptor hyperpolarizes neurons that are activated indirectly by the μ-receptor. In rats, κ-receptor activation in this brainstem nucleus significantly attenuates local μ-receptor-mediated analgesia. Our findings suggest a new cellular mechanism for the potentially ubiquitous opposing interaction between μ- and κ-opioid receptors and may help in the design of treatments for pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Agonists of the κ-receptor hyperpolarize a subpopulation of NRM neurons by increasing potassium conductance.
Figure 2: Activation of κ- and μ-receptors inhibit two distinct types of NRM cell respectively.
Figure 3: Activation of κ-receptor in the NRM antagonizes the analgesia induced by DAMGO microinjected into the periaqueductal grey (PAG).
Figure 4: Model for the opposing interaction between agonists of μ- and κ-opioid receptor in the NRM.

Similar content being viewed by others

References

  1. Matthes, H. W. D. et al. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the μ-opioid-receptor gene. Nature 383, 819–823 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Reisine, T. & Pasternak, G. in Goodman and Gilman's the Pharmacological Basis of Therapeutics (eds Hardman, J. G. & Limbird, L. E.) 521–555 (McGraw-Hill, New York, (1996)).

    Google Scholar 

  3. Zadina, J. E., Hackler, L., Ge, L.-J. & Kastin, A. J. Apotent and selective endogenous agonist for the μ-opiate receptor. Nature 386, 499–502 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Bhargava, H. N. Diversity of agents that modify opioid tolerance, physical dependence, abstinence syndrome and self-administrative behavior. Pharmacol. Rev. 46, 293–324 (1994).

    CAS  PubMed  Google Scholar 

  5. Millan, M. J. κ-Opioid receptors and analgesia. Trends Pharmacol. Sci. 11, 70–76 (1990).

    Article  CAS  Google Scholar 

  6. Rothman, R. B. Areview of the role of anti-opioid peptides in morphine tolerance and dependence. Synapse 12, 129–138 (1992).

    Article  CAS  Google Scholar 

  7. Goldstein, A. & Naidu, A. Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol. Pharmacol. 36, 265–272 (1989).

    CAS  PubMed  Google Scholar 

  8. Basbaum, A. I. & Fields, H. L. Endogenous pain control systems: Brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309–338 (1984).

    Article  CAS  Google Scholar 

  9. Fields, H. L., Heinricher, M. M. & Mason, P. Neurotransmitters in nociceptive modulatory circuits. Annu. Rev. Neurosci. 14, 219–245 (1991).

    Article  CAS  Google Scholar 

  10. Chavkin, C., James, I. F. & Goldstein, A. Dynorphin is a specific endogenous ligand of the κ-opioid receptor. Science 215, 413–415 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Grudt, T. J. & Williams, J. T. κ-Opioid receptors also increase potassium conductance. Proc. Natl Acad. Sci. USA 90, 11429–11432 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Pan, Z. Z., Williams, J. T. & Osborne, P. Opioid actins on single raphe magnus neurons from rat and guinea pig in vitro. J. Physiol. (Lond.) 427, 519–532 (1990).

    Article  CAS  Google Scholar 

  13. Fields, H. L., Vanegas, H., Hentall, I. D. & Zorman, G. Evidence that disinhibition of brain stem neurons contributes to morphine analgesia. Nature 306, 684–686 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Kiefel, J. M., Rossi, G. C. & Bodnar, R. J. Medullary μ- and δ-opioid receptors modulate mesencephalic morphine analgesia in rats. Brain Res. 624, 151–161 (1993).

    Article  CAS  Google Scholar 

  15. Roychowdhury, S. M. & Fields, H. L. Endogenous opioids acting at a medullary μ-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray. Neuroscience 74, 863–872 (1996).

    Article  CAS  Google Scholar 

  16. Hooke, L. P., He, L. & Lee, N. M. Dynorphin A modulates acute and chronic opioid effects. J. Pharmac. Exp. Ther. 273, 292–297 (1995).

    CAS  Google Scholar 

  17. Martin, W. R. Pharmacology of opioids. Pharmacol. Rev. 35, 283–323 (1983).

    CAS  PubMed  Google Scholar 

  18. Koob, G. F. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13, 177–184 (1992).

    Article  CAS  Google Scholar 

  19. Pfeiffer, A., Brantl, V., Herz, A. & Emrich, H. M. Psychotomimesis mediated by κ opiate receptors. Science 233, 774–776 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Di Chiara, G. & North, R. A. Neurobiology of opiate abuse. Trends Pharmacol. Sci. 13, 185–193 (1992).

    Article  CAS  Google Scholar 

  21. Spanagel, R., Herz, A. & Shippenberg, T. S. Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc. Natl Acad. Sci. USA 89, 2046–2050 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Funada, M., Suzuki, T., Narita, M., Misawa, M. & Nagase, H. Blockade of morphine reward through the activation of κ-opioid receptors in mice. Neuropharmacology 32, 1315–1323 (1993).

    Article  CAS  Google Scholar 

  24. Bolanos, C. A., Garmsen, G. M., Clair, M. A. & McDougall, S. A. Effects of the kappa-opioid receptor agonist U-50,488 on morphine-induced place preference conditioning in the developing rat. Eur. J. Pharmacol. 317, 1–8 (1996).

    Article  CAS  Google Scholar 

  25. Chang, K. J., Eckel, R. W. & Blanchard, S. G. Opioid peptides induce reduction of enkephalin receptors in cultured neuroblastoma cells. Nature 296, 446–448 (1982).

    Article  ADS  CAS  Google Scholar 

  26. Loh, H. & Smith, A. Molecular characterization of opioid receptors. Annu. Rev. Pharmacol. Toxicol. 30, 123–147 (1990).

    Article  CAS  Google Scholar 

  27. Sharma, S. K., Klee, W. & Nirenberg, M. Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc. Natl Acad. Sci. USA 72, 3092–3096 (1975).

    Article  ADS  CAS  Google Scholar 

  28. Avidor-Reiss, T. et al. Adenylylcyclase supersensitization in μ-opioid receptor-transfected Chinese hamster ovary cells following chronic opioid treatment. J. Biol. Chem. 270, 29732–29738 (1995).

    Article  CAS  Google Scholar 

  29. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates 2nd edn (Academic, Sydney, (1986)).

    Google Scholar 

Download references

Acknowledgements

We thank R. Nicoll for reviewing the manuscript. This work was supported by the National Institute of Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Z. Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, Z., Tershner, S. & Fields, H. Cellular mechanism for anti-analgesic action of agonists of the κ-opioid receptor. Nature 389, 382–385 (1997). https://doi.org/10.1038/38730

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/38730

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing