Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits

Abstract

Heterotrimeric G-proteins bind to cell-surface receptors and are integral in transmission of signals from outside the cell. Upon activation of the Gα subunit by binding of GTP, the Gα and Gβγ subunits dissociate and interact with effector proteins for signal transduction. Regulatory proteins with the 19-amino-acid GoLoco motif1,2 can bind to Gα subunits and maintain G-protein subunit dissociation in the absence of Gα activation3,4,5,6,7. Here we describe the structural determinants of GoLoco activity as revealed by the crystal structure of Gαi1–GDP bound to the GoLoco region of the ‘regulator of G-protein signalling’ protein RGS14. Key contacts are described between the GoLoco motif and Gα protein, including the extension of GoLoco's highly conserved Asp/Glu-Gln-Arg triad into the nucleotide-binding pocket of Gα to make direct contact with the GDP α- and β-phosphates. The structural organization of the GoLoco–Gαi1 complex, when combined with supporting data from domain-swapping experiments, suggests that the Gα all-helical domain and GoLoco-region carboxy-terminal residues control the specificity of GoLoco–Gα interactions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: αi1·GDP in complex with the RGS14 GoLoco region.
Figure 2: Role of the GoLoco motif Asp-Gln-Arg triad in GDI activity.
Figure 3: Roles of GoLoco C terminus and Gα all-helical domain in GDI selectivity.

Similar content being viewed by others

References

  1. Siderovski, D. P., Diversé-Pierluissi, M. A. & De Vries, L. The GoLoco motif: a Gα-i/o binding motif and potential guanine-nucleotide exchange factor. Trends Biochem. Sci. 24, 340–341 (1999).

    Article  CAS  Google Scholar 

  2. Takesono, A. et al. Receptor-independent activators of heterotrimeric G-protein signalling pathways. J. Biol. Chem. 274, 33202–33205 (1999).

    Article  CAS  Google Scholar 

  3. De Vries, L. et al. Activator of G protein signalling 3 is a guanine dissociation inhibitor for Gα i subunits. Proc. Natl Acad. Sci. USA 97, 14364–14369 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Natochin, M. et al. AGS3 inhibits GDP dissociation from Gα subunits of the Gi family and rhodopsin-dependent activation of transducin. J. Biol. Chem. 275, 40981–40985 (2000).

    Article  CAS  Google Scholar 

  5. Kimple, R. J. et al. RGS12 and RGS14 GoLoco motifs are Gαi interaction sites with guanine nucleotide dissociation inhibitor activity. J. Biol. Chem. 276, 29275–29281 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Natochin, M., Gasimov, K. G. & Artemyev, N. O. Inhibition of GDP/GTP exchange on Gα subunits by proteins containing G-protein regulatory motifs. Biochemistry 40, 5322–5328 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Schaefer, M., Petronoczi, M., Dorner, D., Forte, M. & Knoblich, J. A. Heterotrimeric G proteins direct two modes of asymmetric cell division in the Drosophila nervous system. Cell 107, 183–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Brandt, D. R. & Ross, E. M. GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates. J. Biol. Chem. 260, 266–272 (1985).

    CAS  PubMed  Google Scholar 

  9. Higashijima, T., Ferguson, K. M., Sternweis, P. C., Smigel, M. D. & Gilman, A. G. Effects of Mg2+ and the βγ-subunit complex on the interactions of guanine nucleotides with G proteins. J. Biol. Chem. 262, 762–766 (1987).

    CAS  PubMed  Google Scholar 

  10. Neubig, R. R. & Siderovski, D. P. Regulators of G protein signalling as new central nervous system drug targets. Nature Rev. Drug Discovery 1, 187–197 (2002).

    Article  CAS  Google Scholar 

  11. Du, Q., Stukenberg, P. T. & Macara, I. G. A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle orientation. Nature Cell Biol. 3, 1069–1075 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Coleman, D. E. & Sprang, S. R. Crystal structures of the G protein Gi1 complexed with GDP and Mg2+: a crystallographic titration experiment. Biochemistry 37, 14376–14385 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Mixon, M. B. et al. Tertiary and quaternary structural changes in Giα induced by GTP hydrolysis. Science 270, 954–960 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Brownbridge, G. G., Lowe, P. N., Moore, K. J., Skinner, R. H. & Webb, M. R. Interaction of GTPase activating proteins (GAPs) with p21ras measured by a novel fluorescence anisotropy method. Essential role of Arg-903 of GAP in activation of GTP hydrolysis on p21ras. J. Biol. Chem. 268, 10914–10919 (1993).

    CAS  PubMed  Google Scholar 

  15. Mittal, R., Ahmadian, M. R., Goody, R. S. & Wittinghofer, A. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Science 273, 115–117 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Graham, D. L., Eccleston, J. F. & Lowe, P. N. The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride. Biochemistry 38, 985–991 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Peterson, Y. K. et al. Stabilization of the GDP-bound conformation of Giα by a peptide derived from the G-protein regulatory motif of AGS3. J. Biol. Chem. 275, 33193–33196 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Paulin, F. E., Campbell, L. E., O'Brien, K., Loughlin, J. & Proud, C. G. Eukaryotic translation initiation factor 5 (eIF5) acts as a classical GTPase-activator protein. Curr. Biol. 11, 55–59 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Coleman, D. E. et al. Structures of active conformations of Giα1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Sondek, J., Lambright, D. G., Noel, J. P., Hamm, H. E. & Sigler, P. B. GTPase mechanism of G proteins from the 1.7-Å crystal structure of transducin α-GDP-AIF-4. Nature 372, 276–279 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Bourne, H. R. G proteins. The arginine finger strikes again. Nature 389, 673–674 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Wall, M. A., Posner, B. A. & Sprang, S. R. Structural basis of activity and subunit recognition in G protein heterotrimers. Structure 6, 1169–1183 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Remmers, A. E., Engel, C., Liu, M. & Neubig, R. R. Interdomain interactions regulate GDP release from heterotrimeric G proteins. Biochemistry 38, 13795–13800 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  25. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  26. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  27. Brunger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  28. Kraulis, P. J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  29. Merritt, E. A. & Bacon, D. J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Christopher, J. A. SPOCK: The Structural Properties Observation and Calculation Kit (Program Manual) (The Center for Macromolecular Design, Texas A&M University, College Station, 1998).

Download references

Acknowledgements

We thank R. Neubig for supplying the Gα chimaeras GoGiGo and GiGoGi, members of the Siderovski and Sondek laboratories for technical assistance and support, and T. K. Harden for comments and enthusiasm. R.J.K. is supported by a predoctoral fellowship from the National Institute of Mental Health. J.S. acknowledges support from the National Institutes of Health (NIH) and the Pew Charitable Trusts. D.P.S. is a Year 2000 Scholar of the EJLB Foundation, recipient of the Burroughs–Wellcome Fund New Investigator Award in the Pharmacological Sciences, and acknowledges additional grant support from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Siderovski.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimple, R., Kimple, M., Betts, L. et al. Structural determinants for GoLoco-induced inhibition of nucleotide release by Gα subunits. Nature 416, 878–881 (2002). https://doi.org/10.1038/416878a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416878a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing