Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis

Abstract

Leukotriene B4(LTB4)1 is a potent chemoattractant that is primarily involved in inflammation, immune responses and host defence against infection2. LTB4 activates inflammatory cells by binding to its cell-surface receptor (BLTR)3. LTB4 can also bind and activate the intranuclear transcription factor PPARα, resulting in the activation of genes that terminate inflammatory processes4. Here we report the cloning of the complementary DNA encoding a cell-surface LTB4 receptor that is highly expressed in human leukocytes. Using a subtraction strategy, we isolated two cDNA clones (HL-1 and HL-5) from retinoic acid-differentiated HL-60 cells. These two clones contain identical open reading frames encoding a protein of 352 amino acids and predicted to contain seven membrane-spanning domains, but different 5′-untranslated regions. Membrane fractions of Cos-7 cells transfected with an expression construct containing the open reading frame of HL-5 showed specific LTB4 binding, with a Kd(0.154nM) comparable to that observed in retinoic acid-differentiated HL-60 cells. In CHO cells stably expressing this receptor, LTB4 induced increases in intracellular calcium, D-myo-inositol-1,4,5-triphosphate (InsP3) accumulation, and inhibition of adenylyl cyclase. Furthermore, CHO cells expressing exogenous BLTR showed marked chemotactic responses towards low concentrations of LTB4 in a pertussis-toxin-sensitive manner. Our findings, together with previous reports4,5, show that LTB4 is a unique lipid mediator that interacts with both cell-surface and nuclear receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: cDNA cloning of a BLTR from retinoic acid-differentiated HL-60 cells.
Figure 2: [3H]LTB4 binding to the membrane fractions of retinoic acid-treated HL-60 cells, and Cos-7 and HEK-293 cells transiently transfected with pLTBR.
Figure 3: Signal transduction in CHO-LTBR cells.
Figure 4: LTB4-induced chemotaxis in CHO-LTBR cells.

Similar content being viewed by others

References

  1. Samuelsson, B., Dahlén, S. E., Lindgren, J. & angst; J., Rouzer, C. A. & Serhan, C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237, 1171–1176 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Chen, X.-S., Scheller, J. R., Johnson, E. N. & Funk, C. D. Role of leukotrienes revealed by targeted disruption of 5-lipoxygenase gene. Nature 372, 179–182 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Alexander, S. P. H. & Peters, J. A. Receptor and ion channel nomenclature. Trends Pharmacol. Sci. suppl., 50–51 (1997).

    Google Scholar 

  4. Devchand, P. R. et al. The PPAR α-leukotriene B4 pathway to inflammation control. Nature 384, 39–43 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Fiore, S., Ryeom, S. W., Weller, P. F. & Serhan, C. N. Lipoxin recognition sites. Specific binding of labelled lipoxin A4 with human neutrophils. J. Biol. Chem. 267, 16168–16176 (1992).

    CAS  PubMed  Google Scholar 

  6. Kinker, J. F., Wenzel-Seifert, K. & Seifert, R. G-protein-coupled receptors in HL-60 human leukemia cells. Gen. Pharmacol. 27, 33–54 (1996).

    Article  Google Scholar 

  7. Fiore, S., Romano, M., Reardon, E. M. & Serhan, C. N. Induction of functional lipoxin A4 receptors in HL-60 cells. Blood 81, 3395–3403 (1993).

    CAS  PubMed  Google Scholar 

  8. Erbeck, K., Klein, J. B. & McLeish, K. R. Differential uncoupling of chemoattractant receptors from G proteins in retinoic acid-differentiated HL-60 granulocytes. J. Immunol. 150, 1913–1921 (1993).

    CAS  PubMed  Google Scholar 

  9. Raport, C. J. et al. New members of the chemokine receptor gene family. J. Leukocyte Biol. 59, 18–23 (1996).

    Article  CAS  Google Scholar 

  10. Owman, C., Nilsson, C. & Lolait, S. J. Cloning of cDNA encoding a putative chemoattractant receptor. Genomics 37, 187–194 (1996).

    Article  CAS  Google Scholar 

  11. Yasuda, K. et al. Cloning of a novel somatostatin receptor, SSTR3, coupled to adenylylcyclase. J. Biol. Chem. 267, 20422–20428 (1992).

    CAS  PubMed  Google Scholar 

  12. Fiore, S., Maddox, J. F., Perez, H. D. & Serhan, C. N. Identification of a human cDNA encoding a functional high affinity lipoxin A4 receptor. J. Exp. Med. 180, 253–260 (1994).

    Article  CAS  Google Scholar 

  13. Namba, T. et al. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 365, 166–170 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Honda, Z. et al. Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung. Nature 349, 342–346 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Kishikawa, K. et al. ONO-4057, a novel, orally active leukotriene B4 antagonist: effects on LTB4 -induced neutrophil functions. Prostaglandins 44, 261–275 (1992).

    Article  CAS  Google Scholar 

  16. Taylor, B. M. et al. Biological activity of leukotriene B4 analogs: inhibition of guinea pig eosinophil migration in vitro by the 2,6-disubstituted pyridine analogs U-75,302 and U-75,485. Prostaglandins 42, 211–224 (1991).

    Article  CAS  Google Scholar 

  17. Yokomizo, T. et al. cDNA cloning, expression, and mutagenesis study of leukotriene B412-hydroxydehydrogenase. J. Biol. Chem. 271, 2844–2850 (1996).

    Article  CAS  Google Scholar 

  18. Bomalaski, J. S. & Mong, S. Binding of leukotriene B4 and its analogs to human polymorphonuclear leukocyte membrane receptors. Prostaglandins 33, 855–867 (1987).

    Article  CAS  Google Scholar 

  19. Ng, C. F., Sun, F. F., Taylor, B. M., Wolin, M. S. & Wong, P. Y. Functional properties of guinea pig eosinophil leukotriene B4 receptor. J. Immunol. 147, 3096–3103 (1991).

    CAS  PubMed  Google Scholar 

  20. Powell, W. S., MacLeod, R. J., Gravel, S., Gravelle, F. & Bhakar, A. Metabolism and biologic effects of 5-oxoeicosanoids on human neutrophils. J. Immunol. 156, 336–342 (1996).

    CAS  PubMed  Google Scholar 

  21. Palmblad, J., Lerner, R. & Larsson, S. H. Signal transduction mechanisms for leukotriene B4 induced hyperadhesiveness of endothelial cells for neutrophils. J. Immunol. 152, 262–269 (1994).

    CAS  PubMed  Google Scholar 

  22. Ford-Hutchinson, A., Doig, M. V., Shipley, M. E. & Smith, M. J. Leukotriene B4, a potent chemokinetic and aggregating substance released from the polymorphonuclear leukocytes. Nature 286, 264–265 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Degiulio, R. et al. Increased levels of leukotriene B4 and interleukin-8 in psoriatic skin. Ann. N.Y. Acad. Sci. 685, 614–617 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Gladue, R. P. et al. Inhibition of leukotriene B4-receptor interaction suppresses eosinophil infiltration and disease pathology in a murine model of experimental allergic encephalomyelitis. J. Exp. Med. 183, 1893–1898 (1996).

    Article  CAS  Google Scholar 

  25. Kundra, V. et al. Regulation of chemotaxis by the platelet-derived growth factor receptor-β. Nature 367, 474–476 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Akbar, G. K. M. et al. Molecular cloning of a novel P2 purinoceptor from human erythroleukemia cells. J. Biol. Chem. 271, 18363–18367 (1996).

    Article  Google Scholar 

  27. Chang, K., Hanaoka, K., Kumada, M. & Takuwa, Y. Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J. Biol. Chem. 270, 26152–26158 (1995).

    Article  CAS  Google Scholar 

  28. Ishii, I. et al. Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively active and inactive mutants. J. Biol. Chem. 272, 7846–7854 (1997).

    Article  CAS  Google Scholar 

  29. Yenush, L., Kundra, V., White, M. F. & Zetter, B. R. Functional domains of insulin receptor responsible for chemotactic signaling. J. Biol. Chem. 269, 100–104 (1994).

    CAS  PubMed  Google Scholar 

  30. Powell, W. S., Gravel, S., MacLeod, R. J., Mills, E. & Hashefi, M. Stimulation of human neutrophils by 5-oxo-6,8,11,14-eicosatetraenoic acid by a mechanism independent of the leukotriene B4 receptor. J. Biol. Chem. 268, 9280–9286 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Kume, T. Igarashi, I. Waga, I. Ishii, M. Nakamura and M. Aihara for discussions, M. Ohara and D. Saffen for comments, and Y. Kobayashi and F. Sato for LTB4. This work was supported in part by grants-in-aid from the Ministry of Education, Science, Sports, and Culture and the Ministry of Health and Welfare of Japan, and by grants from the Yamanouchi Foundation for Metabolic Disorders, the Human Life Science Foundation, and the Japan Society for the Promotion of Science. T.Y. is a research fellow of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Shimizu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokomizo, T., Izumi, T., Chang, K. et al. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–624 (1997). https://doi.org/10.1038/42506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42506

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing