Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical applications of angiogenic growth factors and their inhibitors

Abstract

Promoting the formation of new collateral vessels in ischemic tissues using angiogenic growth factors (therapeutic angiogenesis) is a an exciting frontier of cardiovascular medicine. Conversely, inhibition of the action of key regulators of angiogenesis, such as VEGF, constitutes a promising approach for the treatment of solid tumors and intraocular neovascular syndromes. These concepts are being tested now in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VEGFs, their receptors and some of their endothelial effects in cells and tissues.
Figure 2: Yolk sac of E10.5 VEGF+/+ and VEGF +/– mouse embryos5.
Figure 3: Angiography of the lower extremity of a patient with limb ischemia before (PRE) and 3 months after (3 MO) the transfection of a VEGF165 plasmid/liposome expression vector, showing strongly increased vascular density after the treatment.

Similar content being viewed by others

References

  1. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med. 1, 27–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Korpelainen, E.I. & Alitalo, K. Signaling angiogenesis and lymphangiogenesis. Curr. Opin. Cell Biol. 10, 159–164 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara, N. & Davis-Smyth, T. The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelila growth factor isoforms VEGF164 and VEGF188. Nature Med. 5, 495–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Seghezzi, G. et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J. Cell Biol. 171, 1659–1673 (1998).

    Article  Google Scholar 

  9. Rivard, A. & Isner, J.M. Angiogenesis and vasculogenesis in treatment of cardiovascular disease. Mol. Med. 4, 429–440 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Takeshita, S. et al. Therapeutic angiogenesis. A single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J. Clin. Invest. 93, 662–670 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pu, L.Q. et al. Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation 88, 208–215 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Asahara, T. et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 92, II365–II371 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Van Belle, E. et al. Potentiated angiogenic effect of scatter factor hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 97, 381–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Witzenbichler, B. et al. Vascular endothelial growth factor-C (VEGF-C/VEGF-2) promotes angiogenesis in the setting of tissue ischemia. Am. J. Pathol. 153, 381–394 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bauters, C. et al. Physiological assessment of augmented vascularity induced by VEGF in ischemic rabbit hindlimb. Am. J. Physiol. 267, H1263–H1271 (1994).

    CAS  PubMed  Google Scholar 

  16. Takeshita, S. et al. Gene transfer of naked DNA encoding for three isoforms of vascular endothelial growth factor stimulates collateral development in vivo. Lab. Invest. 75, 487–501 (1996).

    CAS  PubMed  Google Scholar 

  17. Mack, C.A. et al. Salvage angiogenesis induced by adenovirus-mediated gene transfer of vascular endothelial growth factor protects against ischemic vascular occlusion. J. Vasc. Surg. 27, 699–709 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Pearlman, J.D. et al. Magnetic resonance mapping demonstrates benefits of VEGF-induced myocardial angiogenesis. Nature Med. 1, 1085–1089 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Harada, K. et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J. Clin. Invest. 94, 623–630 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopez, J.J. et al. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc. Res. 40, 272–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Li, J. et al. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am. J. Physiol. 270, H1803–H1811 (1996).

    CAS  PubMed  Google Scholar 

  22. Mack, C.A. et al. Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J. Thor. Cardiovasc. Surg. 115, 168–176 (1998).

    Article  CAS  Google Scholar 

  23. Giordano, F. et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat. Med. 2, 534–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Isner, J.M. et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348, 370–374 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Baumgartner, I. et al. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 97, 1114–1123 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Losordo, D.W. et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98, 2800–2804 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Isner, J.M. et al. Treatment of thromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J. Vasc. Surg. 28, 964–975 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Henry, T.D. et al. Results of intracoronary recombinant human vascular endothelial growth factor (rhVEGF) administration trial. J. Am. Coll. Cardiol. 31, 65A (810–811) (1998).

    Article  Google Scholar 

  29. Henry, T.D. et al. Double blind, placebo controlled, trial of recombinant human vascular endothelial growth factor: the VIVA trial. J. Am. Coll. Cardiol. 33, 384A 874 (1999).

    Google Scholar 

  30. Bittl, J.A. Advances in coronary angioplasty. N. Engl. J. Med. 335, 1290–1302 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Yla-Herttuala, S. Vascular gene transfer. Curr. Opin. Lipidol. 8, 72–76 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Asahara, T. et al. Local delivery of vascular endothelial growth factor accelerates re-endothelialization and attenuates intimal hyperplasia in balloon-injured rat carotid artery. Circulation 91, 2793–2801 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Burke, P.A., Lehmann-Bruinsma, K. & Powell, J.S. Vascular endothelial growth factor causes endothelial proliferation after vascular injury. Biochem. Biophys. Res. Comm. 207, 348–354 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Laitinen, M. et al. VEGF gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. Hum. Gene Ther. 8, 1737–1744 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Laitinen, M. et al. Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum. Gene Ther. 9, 1481–1486 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Camenzind, E. et al. Intracoronary heparin delivery in humans. Acute feasibility and long-term results. Circulation 92, 2463–2472 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Greelish, J.P. et al. Stable restoration of the sarcoglycan complex in dystrophic muscle perfused with histamine and a recombinant adeno-associated viral vector. Nature Med. 5, 439–443 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Hiltunen, M.O. et al. Intravascular Adenovirus-mediated VEGF-C gene transfer inhibits neointima formation in valloon-denuded rabbit aorta. Circulation (in press).

  39. Algire, G.H. & Chalkley, H.W. Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J. Natl. Cancer Inst. 6, 73–85 (1945).

    Article  Google Scholar 

  40. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  41. Ensoli, B. et al. Block of AIDS-Kaposi's sarcoma (KS) cell growth, angiogenesis, and lesion formation in nude mice by antisense oligonucleotide targeting basic fibroblast growth factor. A novel strategy for the therapy of KS. J. Clin. Invest. 94, 1736–1746 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin, P. et al. Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J. Clin. Invest. 100, 2072–2078 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin, P. et al. Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. Proc. Natl. Acad. Sci. USA 95, 8829–8834 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Fukumura, D. et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715–725 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Gasparini, G. et al. Prognostic significance of vascular endothelial growth factor protein in node-negative breast carcinoma. J. Natl. Cancer Inst. 89, 139–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Maeda, K. et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma. Cancer 77, 853–863 (1996).

    Google Scholar 

  47. Salven, P., Ruotsalainen, T., Mattson, K. & Joensuu, H. High pre-treatment serum level of vascular endothelial growth factor (VEGF) is associated with poor outcome in small-cell lung cancer. Int. J. Cancer 79, 144–146 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, K.J. et al. Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841–844 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Borgström, P., Hillan, K.J., Sriramarao, P. & Ferrara, N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. 56, 4032–4039 (1996).

    PubMed  Google Scholar 

  50. Yuan, F. et al. Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc. Natl. Acad. Sci. USA 93, 14765–14770 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Millauer, B. et al. Dominant-negative inhibition of Flk-1 suppresses the growth of many tumor types in vivo. Cancer Res. 56, 1615–1620 (1996).

    CAS  PubMed  Google Scholar 

  52. Kong, H.L. et al. Regional suppression of tumor growth by in vivo transfer of a cDNA encoding a secreted form of the extracellular domain of the flt-1 vascular endothelial growth factor receptor. Hum. Gene Ther. 9, 823–833 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Goldman, C.K. et al. Paracrine expression of a native soluble vascular endothelial growth factor receptor inhibits tumor growth, metastasis, and mortality rate. Proc. Natl. Acad. Sci. USA 95, 8795–8800 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Presta, L.G. et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57, 4593–4599 (1997).

    CAS  PubMed  Google Scholar 

  55. Ryan, A.M. et al. Preclinical safety evaluation of rhuMAbVEGF, an antiangiogenic humanized monoclonal antibody. Toxicol Pathol. 27, 78–86, 1999.

    Article  CAS  PubMed  Google Scholar 

  56. Strawn, L.M. et al. Flk-1 as a target for tumor growth inhibition. Cancer Res. 56, 3540–3545 (1996).

    CAS  PubMed  Google Scholar 

  57. Patz, A. Studies on retinal neovascularization. Invest. Ophthalmol. Vis. Sci. 19, 1133–1138 (1980).

    CAS  PubMed  Google Scholar 

  58. Aiello, L.P. et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl. J. Med. 331, 1480–1487 (1994).

    Article  CAS  PubMed  Google Scholar 

  59. Adamis, A.P. et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch. Ophthalmol. 114, 66–71 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Aiello, L.P. et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc. Natl. Acad. Sci. USA 92, 10457–10461 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Smith, L.E. et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 276, 5319–5321 (1997).

    Google Scholar 

  62. Garner, A. in Pathobiology of Ocular Diseases 2nd edn. (eds. Garner, A. & Klintworth, G.K.) 1625–1710 (Marcel Dekker, New York, 1994).

    Google Scholar 

  63. Lopez, P.F., Sippy, B.D., Lambert, H.M., Thach, A.B. & Hinton, D.R. Transdifferentiated retinal pigment epithelial cells are immunoreactive for vascular endothelial growth factor in surgically excised age-related macular degeneration-related choroidal neovascular membranes. Invest. Ophthalmol. Vis. Sci. 37, 855–868 (1996).

    CAS  PubMed  Google Scholar 

  64. Ruckman, J. et al. 2'-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. van Bruggen, N. et al. VEGF antagonism reduces cerebral edema formation and tissue damage following ischemic-reperfusion injury in the mouse brain. J. Clin. Inv. (in the press).

  66. Ferrara, N. et al. Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Med. 4, 336–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. McClure, N. et al. Vascular endothelial growth factor as a capillary permeability agent in ovarian hyperstimulation syndrome. Lancet. 344, 235–269, 1994.

    Article  CAS  PubMed  Google Scholar 

  68. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Adams, R.H. et al. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295–306 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, H.U., Chen, Z.-F. & Anderson, D.J. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741–753 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Shyu, K.-G., Manor, O., Magner, M., Yancopoulos, G.D. & Isner, J.M. Direct intramuscular injection of plasmid DNA encoding angiopoietin-1 but not angiopoietin-2 augments revascularization in the rabbit ischemic hindlimb. Circulation 98, 2081–2087 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Roelen, B.A. & van Rooijen, M.A. Mummery CL. Expression of ALK-1, a type 1 serine/threonine kinase receptor, coincides with sites of vasculogenesis and angiogenesis in early mouse development. Dev. Dyn. 209, 418–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Uyttendaele, H. et al. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 122, 2251–2259 (1996).

    CAS  PubMed  Google Scholar 

  74. Jain, R.K. Delivery of molecular and cellular medicine to solid tumors. J. Control. Release 53, 49–67 (1998).

    Article  CAS  PubMed  Google Scholar 

  75. Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Albini, A. et al. The angiogenesis induced by HIV-1 Tat protein is mediated by the Flk-1/KDR receptor on vascular endothelial cells. Nat. Med. 2, 1371–1375 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Bais, C. et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391, 86–89, 1998.

    Article  CAS  PubMed  Google Scholar 

  78. Ogawa, S. et al. A novel type of vascular endothelial growth factor: VEGF-E (NZ-7 VEGF) preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J. Biol. Chem. 273, 31273–31282 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Meyer, M. et al. A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signaling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases. EMBO J. 18, 363–374 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wise, L.M. et al. Vascular endothelial growth factor (VEGF) -like protein from orf virus NZ2 binds to VEGFR2 and Neuropilin-1. Proc. Natl. Acad. Sci. 96, 3071–3076 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Suri, C. et al. Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Asahara, T. et al. Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ. Res. 83, 233–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  83. Springer, M.L,. Chen, A.S., Kraft, P.E., Bednarski, M. & Blau, H.M. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol. Cell 2, 549–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Oh, S.J. et al. VEGF and VEGF-C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev. Biol. 188, 96–109 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Pham, C.D. et al. Magnetic resonance imaging detects suppression of tumor vascular permeability after administration of antibody to vascular endothelial growth factor. Cancer Invest. 16, 225–230 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Gerber, H.P. et al. VEGF is required for growth and survival in neonatal mice. Development. 126, 1149–1159 (1999).

    CAS  PubMed  Google Scholar 

  88. Benjamin, L., Hemo, I. & Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125, 1591–1598 (1998).

    CAS  PubMed  Google Scholar 

  89. Gerber, H. P. et al. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat. Med., 5, 623–628 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Ostendorf, T. et al. VEGF165 mediates glomerular endothelial repair. J. Clin Invest. 104, 913–923 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Shi, Q. et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 92, 362–367 (1998).

    CAS  PubMed  Google Scholar 

  93. Ziegler, B.L. et al. KDR receptor: a key marker defining hematopoietic stem cells. Science 285, 1553–1558 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Med. 5, 434–438 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Soldi, R. et al. Role of avb3 in the activation of vascular endothelial growth factor receptor-2. EMBO J. 18, 882–892 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Ferrell, R.E. et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum. Mol. Genet. 7, 2073–2078 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Napoleone Ferrara or Kari Alitalo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrara, N., Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5, 1359–1364 (1999). https://doi.org/10.1038/70928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/70928

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing