Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pore dilation of neuronal P2X receptor channels

Abstract

P2X receptors are ligand-gated ion channels activated by the binding of extracellular adenosine 5´-triphosphate (ATP). Brief (< 1 s) applications of ATP to nodose ganglion neurons or to cells transfected with P2X2 or P2X4 receptor cDNAs induce the opening of a channel selectively permeable to small cations within milliseconds. We now show that, during longer ATP application (10–60 s), the channel also becomes permeable to much larger cations such as N-methyl-D-glucamine and the propidium analog YO-PRO-1. This effect is enhanced in P2X2 receptors carrying point mutations in the second transmembrane segment. Progressive dilation of the ion-conducting pathway during prolonged activation reveals a mechanism by which ionotropic receptors may alter neuronal function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sustained P2X2-receptor activation causes rapid increase in permeability to NMDG+.
Figure 2: Kinetic properties and cation selectivity for P2X receptors expressed heterologously in H2K cells (black symbols) and native receptors in nodose neurons (white symbols).
Figure 3: Permeability increase is concentration dependent.
Figure 4: HEK cells expressing P2X receptors take up YO-PRO-1 during 60-s application of ATP.
Figure 5: Kinetics of YO-PRO1 uptake at cloned and neuronal P2X receptors.
Figure 6: Sustained P2X receptor activation in cultured nodose neurons results in increased NMDG+ permeability as well as YO-PRO-1 uptake.

Similar content being viewed by others

References

  1. North, R. A. & Barnard, E. A. Nucleotide receptors. Curr. Opin. Neurobiol. 7, 346–357 (1997).

    Article  CAS  Google Scholar 

  2. North, R. A. P2X purinoceptor plethora. Semin. Neurosci. 8, 187–194 (1996).

    Article  CAS  Google Scholar 

  3. Evans, R. J. & Surprenant, A. P2X receptors in autonomic and sensory neurons. Semin. Neurosci. 8, 217–223 (1996).

    Article  CAS  Google Scholar 

  4. Evans, R. J. & Surprenant, A. Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Br. J. Pharmacol. 106, 242–249 (1992).

    Article  CAS  Google Scholar 

  5. Evans, R. J., Derkach, V. & Surprenant, A. ATP mediates fast synaptic transmission in mammalian neurones. Nature 357, 503– 505 (1992).

    Article  CAS  Google Scholar 

  6. Edwards, F. A., Gibb, A. J. & Colquhoun, D. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144– 147 (1992).

    Article  CAS  Google Scholar 

  7. Gu, J. G. & MacDermott, A. B. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389, 749–753 ( 1997).

    Article  CAS  Google Scholar 

  8. Khakh, B. S. & Henderson, G. ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol. Pharmacol. 54, 372–378 ( 1998).

    Article  CAS  Google Scholar 

  9. Le, K. T. et al. Sensory presynaptic and widespread somatodendritic immunolocalization of central ionotropic P2X ATP receptors. Neuroscience 83, 177–190 (1998).

    Article  CAS  Google Scholar 

  10. Lewis, C. et al. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377, 432–435 ( 1995).

    Article  CAS  Google Scholar 

  11. Benham, C. D. & Tsien R. W. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 328, 275–278 ( 1987).

    Article  CAS  Google Scholar 

  12. Virginio, C., North, R. A. & Surprenant, A. Calcium permeability and block at homomeric and heteromeric P2X2 and P2X3 receptors, and P2X receptors in rat nodose neurones. J. Physiol. (Lond.) 510, 27– 35 (1998).

    Article  CAS  Google Scholar 

  13. Evans, R. J. et al. Ionic permeability and divalent cation effects on two ATP-gated cation channels (P2X receptors) expressed in heterologous cells. J. Physiol. (Lond.) 497, 413–422 (1996).

    Article  CAS  Google Scholar 

  14. Valera, S. et al. A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP. Nature 371, 516– 519 (1994).

    Article  CAS  Google Scholar 

  15. Garcia-Guzman, M. et al. Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol. Pharmacol. 51, 109–118 (1997).

    Article  CAS  Google Scholar 

  16. Surprenant, A., Rassendren, F., Kawashima, E., North, R. A. & Buell, G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272, 735–738 (1996).

    Article  CAS  Google Scholar 

  17. Collo, G. et al. Tissue distribution of the P2X7 receptor. Neuropharmacology 36 1277–1284 (1997).

    Article  CAS  Google Scholar 

  18. Rassendren, F. et al. The permeabilizing ATP receptor (P2X7): cloning and expression of a human cDNA. J. Biol. Chem. 272, 5482–5486 (1997).

    Article  CAS  Google Scholar 

  19. Di Virgilio, F. The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol. Today 16, 524– 528 (1995).

    Article  CAS  Google Scholar 

  20. Humphreys, B. D., Virginio, C., Surprenant, A., Rice, J. & Dubyak, G. R. Isoquinolines as antagonists of the P2X7 nucleotide receptor: high sensitivity for the human versus rat receptor homologues. Mol. Pharmacol. 54, 22–32 (1998).

    Article  CAS  Google Scholar 

  21. Gill, C. H., Peters, J. A. & Lambert, J. J. An electrophysiological investigation of the properties of a murine recombinant 5-HT3 receptor stably expressed in HEK293 cells. Br. J. Pharmacol. 114, 1211–1221 (1995).

    Article  CAS  Google Scholar 

  22. Brandle, U. et al. Desensitization of the P2X(2) receptor controlled by alternative splicing. FEBS Lett. 404, 294– 298 (1997).

    Article  CAS  Google Scholar 

  23. Simon, J. et al. Localization and functional expression of splice variants of the P2X2 receptor. Mol. Pharmacol. 52, 237–248 (1997).

    Article  CAS  Google Scholar 

  24. Collo, G. et al. Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 16, 2495–2507 (1996).

    Article  CAS  Google Scholar 

  25. Li, C., Peoples, R. W. & Weight, F. F. Ethanol-induced inhibition of a neuronal P2X purinoceptor by an allosteric mechanism. Br. J. Pharmacol. 123, 1–3 (1998).

    Article  CAS  Google Scholar 

  26. Harden, T. K. et al. in P2 Nucleotide Receptors (eds. Turner, J. T., Weisman, G. A. & Fedan, J. S.) 109–134 (Humana, Totowa, New Jersey, 1998).

    Book  Google Scholar 

  27. Buell, G., Lewis, C., Collo, G., North, R. A. & Surprenant, A. An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J. 15, 55– 62 (1996).

    Article  CAS  Google Scholar 

  28. Rassendren, F., Buell, G., Newbolt, A., North, R. A. & Surprenant A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 16, 3446–3454 (1997).

    Article  CAS  Google Scholar 

  29. Egan, T. M., Haines, W. R. & Voigt, M. M. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J. Neurosci. 18, 2350– 2359 (1998).

    Article  CAS  Google Scholar 

  30. Khakh, B. S., Humphrey, P. P. A. & Surprenant, A. Electrophysiological properties of P2X-purinoceptors in rat superior cervical, nodose and guinea-pig coeliac neurones. J. Physiol. (Lond.) 484, 385–395 (1995).

    Article  CAS  Google Scholar 

  31. Li, C., Peoples, R. W. & Weight, F. F. Mg2+ inhibition of ATP-activated current in rat nodose ganglion neurons: evidence that Mg2+ decreases the agonist affinity of the receptor. J. Neurophysiol. 77, 3391–3395 (1997).

    Article  CAS  Google Scholar 

  32. Evans, R. J. et al. Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2X purinoceptors). Mol. Pharmacol. 48, 178–183 ( 1995).

    CAS  PubMed  Google Scholar 

  33. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994).

    Article  CAS  Google Scholar 

  34. Tiairi, A. et al. Ligand binding to the serotonin 5-HT3 receptor studied with a novel fluorescent ligand. Biochemistry (in press).

  35. Fenwick, E. M., Marty, A. & Neher, E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J. Physiol. (Lond.) 331, 577–597 (1982).

    Article  CAS  Google Scholar 

  36. Clements, J. D. Rapid solution exchange using a piezoelectric translator. Axobits 14, 9–11 (1993).

    Google Scholar 

  37. Neher, E. in Methods in Enzymology, Ion Channels vol. 207, 123– 130 (1992).

    Book  Google Scholar 

Download references

Acknowledgements

We are grateful to Daniele Estoppey and Denis Fahmi and Alison Newbolt for assistance with cell culture, transfections and mutagenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Surprenant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virginio, C., MacKenzie, A., Rassendren, F. et al. Pore dilation of neuronal P2X receptor channels. Nat Neurosci 2, 315–321 (1999). https://doi.org/10.1038/7225

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing