Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia

Abstract

Insulin gene expression is restricted to islet β cells of the mammalian pancreas through specific control mechanisms mediated in part by specific transcription factors1,2. The protein encoded by the pancreatic and duodenal homeobox gene 1 (PDX-1) is central in regulating pancreatic development and islet cell function3. PDX-1 regulates insulin gene expression and is involved in islet cell-specific expression of various genes4,5,6,7. Involvement of PDX-1 in islet-cell differentiation and function has been demonstrated mainly by ‘loss-of-function’ studies8,9,10,11. We used a ‘gain-of-function’ approach to test whether PDX-1 could endow a non-islet tissue with pancreatic β-cell characteristics in vivo. Recombinant-adenovirus-mediated gene transfer of PDX-1 to the livers of BALB/C and C57BL/6 mice activated expression of the endogenous, otherwise silent, genes for mouse insulin 1 and 2 and prohormone convertase 1/3 (PC 1/3). Expression of PDX-1 resulted in a substantial increase in hepatic immunoreactive insulin content and an increase of 300% in plasma immunoreactive insulin levels, compared with that in mice treated with control adenovirus. Hepatic immunoreactive insulin induced by PDX-1 was processed to mature mouse insulin 1 and 2 and was biologically active; it ameliorated hyperglycemia in diabetic mice treated with streptozotocin. These data indicate the capacity of PDX-1 to reprogram extrapancreatic tissue towards a β-cell phenotype, may provide a valuable approach for generating ‘self’ surrogate β cells, suitable for replacing impaired islet-cell function in diabetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RT–PCR analysis of mRNA for mI-1, mI-2, human insulin, PDX-1 and β-actin.
Figure 2: Immunohistochemical staining of livers.
Figure 3: Liver from PDX-1 treated mice contain processed insulin and express the prohormone convertase PC1/3.
Figure 4: Ectopic expression of PDX-1 in mice livers ameliorates streptozotocin-induced hyperglycemia.

Similar content being viewed by others

References

  1. Sander, M. & German, M.S. The β-cell transcription factors and development of the pancreas. J. Mol. Med. 75, 327–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Edlund, T., Walker, M.D., Barr, P.J. & Rutter, W.J. Cell specific expression of the rat insulin gene. Science 230, 912–916 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Stoffers, D.A., Thomas, M.K. & Habener, J.F. The homeodomain protein IDX-1. Trends Endocrinol. & Metab. 8, 145–151 (1997).

    Article  CAS  Google Scholar 

  4. Watada, H. et al. The human glucokinase gene β-cell-type promoter. An essential role of insulin promoter factor 1/PDX-1 in its activation in HIT-T15 cells . Diabetes 45, 1478–1488 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Miller, C.P., McGehee, R. & Habener, J.F. A new homeodomain transcription factor expressed in rat pancreatic islets and duodenum stimulates somatostatin gene expression in pancreatic islets. EMBO J. 13, 1145– 1156 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Waeber, G., Thompson, N., Nicod, P. & Bonny, C. Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol. Endocrinol. 10, 1327–1333 (1996).

    CAS  PubMed  Google Scholar 

  7. Marshak, S., Totary, H., Cerasi, E. & Melloul, D. Purification of the β-cell glucose-sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc. Natl. Acad. Sci. USA 93, 15057–15062 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor-1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Offield, M.F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983–995 (1996).

    CAS  PubMed  Google Scholar 

  10. Edlund, H. Transcribing a pancreas. Diabetes 47, 1817 –1823 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Stoffers, D.A., Zinkin, N.T., Stanojevic, V., Clarke, W.L. & Habener, J.F. Pancreas agenesis attributable to a single nucleotide deletion in the human IPF-1 gene coding sequence. Nature Genet. 15, 106–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Seijffers, R. et al. Increase in PDX-1 levels supresses insulin gene expression in RIN-38 cells. Endocrinology 140, 3311 –3317 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Steiner, D.F., Chan, S.J., Welsh, M.J. & Kwok, S.C.M. Structure and evolution of the insulin gene. Annu. Rev. Genet. 19 , 463–484 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Siegfried, Z. & Cedar, H. DNA methylation: a molecular lock . Curr. Biol. 7, R305–R307 (1998).

    Article  Google Scholar 

  15. Van-Holde, K.E. Chromatin structure and regulation of gene expression. J. Biol. Chem. 272, 26073 (1997).

    Article  CAS  Google Scholar 

  16. Vollenweider, F., Irminger, J.C., Gross, D.J., Villa-Komaroff, L. & Halban, P.A. Processing of proinsulin by transfected hepatoma (FAO) cells. J. Biol. Chem. 267, 14629–14636 (1992).

    CAS  PubMed  Google Scholar 

  17. Steiner, D.F., Smeekens, S.P., Ohagi, S. & Chan, S.J. The new enzymology of precursor processing endopeptidases. J. Biol. Chem. 267, 23435–23438 ( 1992).

    CAS  PubMed  Google Scholar 

  18. O'Doherty, R.M., Lehman, D.L., Telemaque-Potts, S. & Newgard, C.B. Metabolic impact of glucokinase overexpression in liver: lowering of blood glucose in fed rats is accompanied by hyperlipidemia. Diabetes 48, 2022–2027 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  19. Emens, L.A., Landers, D.W. & Moss, L.G. Hepatocyte nuclear factor 1 α is expressed in a hamster insulinoma line and transactivates the rat insulin I gene. Proc. Natl. Acad. Sci. USA 89, 7300– 7304 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lekstrom-Himes, J. & Xanthopoulos, K.G. Biological role of the CCAAT/enhancer-binding protein family of transcription factors . J.Biol. Chem. 273, 28545– 28548 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Weintraub, H., et al. Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc. Natl. Acad. Sci. USA 86, 5434– 5438 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heller, R.S., Stoffer, D.A., Hussain, M.A., Miller, C.P. & Habener, J.F. Misexpression of IDX-1 by Hoxa-4 promoter associated with agenesis of the cecum. Gastroenterology 115, 381–3871 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  23. Alison, M. Liver stem cells: a two compartment system. Curr. Opin. Cell Biol. 10, 710–716 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  24. Thorgeirsson, S.S. Hepatic stem cells in liver regeneration. FASEB J. 10, 1249–1256 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Gross, D.J., Leibowitz, G., Cerasi, E. & Kaiser, N. Increased susceptibility of islets from diabetes-prone Psammomys obesus to the deleterious effects of chronic glucose exposure. Endocrinology 137, 5610–5615 ( 1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Gal, Y. Cohen, Y. Ariav, P. Keren, A. Shaish, M. Tal and D. Castel for technical support; M.D. Walker and C.B. Newgard for critically reviewing the manuscript; R. Skutelsky and H. Halkin for editing the manuscript; and B. Goldman for support. The study was partially supported by a grant from Israel Ministry of Health-Mendel Chodowski-Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Ferber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferber, S., Halkin, A., Cohen, H. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med 6, 568–572 (2000). https://doi.org/10.1038/75050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing