Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in KERA, encoding keratocan, cause cornea plana

Abstract

Specialized collagens and small leucine-rich proteoglycans (SLRPs) interact to produce the transparent corneal structure1. In cornea plana, the forward convex curvature is flattened, leading to a decrease in refraction2. A more severe, recessively inherited form (CNA2; MIM 217300) and a milder, dominantly inherited form (CNA1; MIM 121400) exist. CNA2 is a rare disorder with a worldwide distribution, but a high prevalence in the Finnish population3. The gene mutated in CNA2 was assigned by linkage analysis to 12q (refs 4,5), where there is a cluster of several SLRP genes6,7,8,9. We cloned two additional SLRP genes highly expressed in cornea: KERA (encoding keratocan) in 12q and OGN (encoding osteoglycin) in 9q. Here we report mutations in KERA in 47 CNA2 patients: 46 Finnish patients are homozygous for a founder missense mutation, leading to the substitution of a highly conserved amino acid; and one American patient is homozygous for a mutation leading to a premature stop codon that truncates the KERA protein. Our data establish that mutations in KERA cause CNA2. CNA1 patients had no mutations in these proteoglycan genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haplotype sharing among CNA2 patients.
Figure 2: Physical map of the CNA2 region with relevant BAC clones.
Figure 3: Gene and protein structure of human keratocan.
Figure 4: Expression of human keratocan.
Figure 5: Identification of the two mutations in KERA associated with CNA2.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tralstad, R.L., Hayashi, K. & Toole, B.P. Epithelial collagens and glycosaminoglycans in the embryonic cornea. J. Cell. Biol. 62, 815–830 (1974).

    Article  Google Scholar 

  2. Wilson, F.M. II . Congenital anomalies of the cornea and conjunctiva. in The Cornea (eds Smolin, G. & Thoft, R.A.) 539–540 (Little, Brown, Boston, 1994).

    Google Scholar 

  3. Eriksson, A.W., Lehmann, W. & Forsius, H. Congenital cornea plana in Finland. Clin. Genet. 4, 301–310 (1973).

    Article  CAS  Google Scholar 

  4. Tahvanainen, E. et al. Cornea plana congenita gene assigned to the long arm of chromosome 12 by linkage analysis. Genomics 26, 290–293 (1995).

    Article  CAS  Google Scholar 

  5. Tahvanainen, E. et al. Linkage disequilibrium mapping of the cornea plana congenita gene CNA2. Genomics 30, 409–414 (1995).

    Article  CAS  Google Scholar 

  6. Danielson, K.G. et al. The human decorin gene: intron-exon organization, discovery of two alternatively spliced exons in the 5′ untranslated region, and mapping of the gene to chromosome 12q23. Genomics 15, 146–160 (1993).

    Article  CAS  Google Scholar 

  7. Vetter, U., Vogel, W., Just, W., Young, M.F. & Fisher, L.W. Human decorin gene; intron-exon junctions and chromosomal localization. Genomics 15, 161–168 (1993).

    Article  CAS  Google Scholar 

  8. Grover, J., Chen, X.-N., Korenberg, J.R. & Roughley, P.J. The human lumican gene. Organization, chromosomal location and expression in articular cartilage. J. Biol. Chem. 270, 21942–21949 (1995).

    Article  CAS  Google Scholar 

  9. Deere, M. et al. Characterization of human DSPG3, a small dermatan sulfate proteoglycan. Genomics 38, 399–404 (1996).

    Article  CAS  Google Scholar 

  10. Tahvanainen, E., Sigler-Villanueva, A., Forsius, H., Salo, P. & de la Chapelle, A. Dominantly and recessively inherited cornea plana congenita map to the same small region of chromosome 12. Genome Res. 6, 249–254 (1996).

    Article  CAS  Google Scholar 

  11. Tahvanainen, E. et al. The genetics of cornea plana congenita. J. Med. Genet. 33, 116–119 (1996).

    Article  CAS  Google Scholar 

  12. Corpuz, L.M. et al. Molecular cloning and tissue distribution of keratocan. J. Biol. Chem. 271, 9759–9763 (1996).

    Article  CAS  Google Scholar 

  13. Liu C.-Y. et al. The cloning of the mouse keratocan cDNA and genomic DNA and the characterization of its expression during eye development. J. Biol. Chem. 273, 22584–22588 (1998).

    Article  CAS  Google Scholar 

  14. Hocking, A.M., Shinomure, T. & McQuillan, D. Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol. 17, 1–19 (1998).

    Article  CAS  Google Scholar 

  15. Forsius, H. et al. Autosomal recessive cornea plana. A clinical and genetic study of 78 cases in Finland. Acta Ophthalmol. Scand. 76, 196–203 (1998).

    Article  CAS  Google Scholar 

  16. Funderburgh, J.L. et al. Mimecan, the 25 kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin. J. Biol. Chem. 272, 28089–28095 (1997).

    Article  CAS  Google Scholar 

  17. Spencer, W.H. Cornea. in Ophthalmic Pathology (ed. Spencer, W.H.) 159–177 (W.B. Saunders Company, Philadelphia, 1996).

    Google Scholar 

  18. Griffith, M. et al. Functional human corneal equivalents constructed from cell lines. Science 286, 2169–2172 (1999).

    Article  CAS  Google Scholar 

  19. Sigler-Villanueva, A., Tahvanainen, E., Lindh, S., Dieguez-Lucena, J. & Forsius, H. Autosomal dominant cornea plana: clinical findings in a Cuban family and a review of the literature. Ophthalmic Genet. 18, 55–62 (1997).

    Article  CAS  Google Scholar 

  20. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).

    Article  CAS  Google Scholar 

  21. Uberbacher, E.C. & Mural, R.J. Locating protein-coding regions in human DNA sequences by a multiple sensor neural network approach. Proc. Natl Acad. Sci. USA 88, 11261–11265 (1992).

    Article  Google Scholar 

  22. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acid Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  23. Deere, M. et al. Genomic characterization of human DSPG3. Genome Res. 9, 449–456 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liechti-Gallati, S., Schneider, V., Neeser, D. & Kraemer, R. Two buffer PAGE system-based SSCP/HD analysis: a general protocol for rapid and sensitive mutation screening in cystic fibrosis and any other human genetic disease. Eur. J. Hum. Genet. 7, 590–598 (1999).

    Article  CAS  Google Scholar 

  25. Miano, J.M., Garcia, E. & Krahe, R. High resolution radiation hybrid (RH) mapping of human smooth muscle-restricted genes. in Molecular Biology of Vascular Diseases, Methods in Molecular Medicine Series (ed. Baker, A.H.) 25–35 (Humana Press, Tetowa, 1999).

    Google Scholar 

  26. Tasheva, E.S., Funderburgh, J.L., Funderburgh, M.L., Corpuz, L.M. & conrad, G.W. Structure and sequence of the gene encoding human keratocan DNA Seq. 10, 67–74 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for cooperation; R. Chadwick, C. Johnson and B. Yuan for sequencing and data assembly assistance; Y. Huang and J. Lockman for technical assistance; I. Maumenee, J. Hecht, A. Sigler-Villanueva and E.-M. Sankila for providing materials; and P. Kaumaya, K. Mrozek, S. Tanner and P. Peltomäki for helpful discussions. N.S.P. was supported in part by a fellowship from the ACSBI-UICC. This work was supported by grants from the National Institutes of Health (NG1763 and P30 CA16058) and the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert de la Chapelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pellegata, N., Dieguez-Lucena, J., Joensuu, T. et al. Mutations in KERA, encoding keratocan, cause cornea plana. Nat Genet 25, 91–95 (2000). https://doi.org/10.1038/75664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing