Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SLO-2, a K+ channel with an unusual Cl dependence

Abstract

The gating of different potassium channels depends on many diverse factors. We now report a unique example of a K+ channel with a Cl dependence. The slo-2 gene was cloned from Caenorhabditis elegans and is widely expressed in both neurons and muscles; it was highly abundant, as suggested by its high representation in the C. elegans EST database. SLO-2, like its paralogue, SLO-1, was also dependent on Ca2+. We show by site-directed mutagenesis that its requirements for both Cl and Ca2+ are synergistic and associated with the same functional domain. SLO-2's dependence on Cl implies that intracellular Cl homeostasis may be important in regulating cellular excitability through this unusual K+ channel.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tissue-specific expression pattern of slo-2.
Figure 2: The SLO family of K+ channels consists of three known members gated by voltage and modulated by Ca2+ (SLO-1), Cl and Ca2+ (SLO-2) or pH (SLO-3).
Figure 3: SLO-2 requires both intracellular Cl and Ca2+ for activation.
Figure 4: Increasing Cl or Ca2+ increases SLO-2 activity.
Figure 5: SLO-2 is activated by depolarization, as shown by the representative traces of a single inside-out patch under progressively higher voltages.
Figure 6: SLO-2 is also activated by I.
Figure 7: Mutations in the chloride bowl of SLO-2 produced channels with decreased sensitivity to Cl and Ca2+.
Figure 8: The neu and neg mutants are poorly activated by Cl and Ca2+.

Similar content being viewed by others

References

  1. Wei, A., Jegla, T. & Salkoff, L. Eight potassium channel families revealed by the C. elegans genome project. Neuropharmocology 35 , 805–829 (1996).

    Article  CAS  Google Scholar 

  2. Salkoff, L. et al. in Potassium Ion Channels (eds. Kurachi, Y., Jan, L. Y. & Lazdunski M.) 9–23 (Academic, San Diego, 1999).

    Google Scholar 

  3. Schreiber, M., Yuan, A. & Salkoff, L. Transplantable sites confer calcium sensitivity to BK channels. Nat. Neurosci. 2, 416– 421 (1999).

    Article  CAS  Google Scholar 

  4. Marty, A. Ca2+-dependent K+ channels with large unitary conductance in chromaffin cell membranes. Nature 291 , 497–500 (1981).

    Article  CAS  Google Scholar 

  5. Pallotta, B. S., Magelby, K. L. & Barrett, J. N. Single channel recordings of Ca2+-activated K+ currents in rat muscle cell culture. Nature 293, 471–474 (1981).

    Article  CAS  Google Scholar 

  6. Barrett, J. N., Magelby, K. L. & Pallotta, B. S. Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. (Lond.) 331, 211–230 (1982).

    Article  CAS  Google Scholar 

  7. Latorre, R., Vergara, C. & Hidalgo, C. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc. Natl. Acad. Sci. USA 79, 805–809 ( 1982).

    Article  CAS  Google Scholar 

  8. Schreiber, M. et al. Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J. Biol. Chem. 273, 3509–3515 (1998).

    Article  CAS  Google Scholar 

  9. Petersen, O. H. & Maruyama, Y. Calcium-activated potassium channels and their role in secretion. Nature 307, 693–696 (1984).

    Article  CAS  Google Scholar 

  10. Robitaille, R. & Charlton, M. P. Presynaptic calcium signals and transmitter release are modulated by calcium-activated potassium channels. J. Neurosci. 12, 297 –305 (1992).

    Article  CAS  Google Scholar 

  11. Brayden, J. E. & Nelson, M. T. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256, 532–535 ( 1992).

    Article  CAS  Google Scholar 

  12. Knaus, H. G. et al. Distribution of high-conductance Ca2+-activated K+ channels in rat brain: targeting to axons and nerve terminals . J. Neurosci. 16, 955– 963 (1996).

    Article  CAS  Google Scholar 

  13. Ramanathan, K., Michael, T. H., Jiang, G. J., Hiel, H. & Fuchs P. A. A molecular mechanism for electrical tuning of cochlear hair cells. Science 283, 215–217 (1999).

    Article  CAS  Google Scholar 

  14. Navaratnam, D. S., Bell, T. J., Tu, T. D., Cohen, E. L. & Oberholtzer, J. C. Differential distribution of Ca2+-activated K+ channel splice variants among hair cells along the tonotopic axis of the chick cochlea. Neuron 5, 1077 –1085 (1997).

    Article  Google Scholar 

  15. Atkinson, N. S., Robertson, G. A. & Ganetzky, B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science 253, 551–555 (1991).

    Article  CAS  Google Scholar 

  16. Adelman, J. P. et al. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron 9, 209– 216 (1992).

    Article  CAS  Google Scholar 

  17. Butler, A., Tsunoda, S., McCobb, D. P., Wei, A. & Salkoff, L. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261, 221–224 ( 1993).

    Article  CAS  Google Scholar 

  18. Pallanck, L. & Ganetzky, B. Cloning and characterization of human and mouse homologues of the Drosophila calcium-activated potassium channel gene, slowpoke. Hum. Mol. Genet. 3, 1239 –1243 (1994).

    Article  CAS  Google Scholar 

  19. Tseng-Crank, J. et al. Cloning, expression, and distribution of functionally distinct Ca2+-activated K+ channel isoforms from human brain. Neuron 13, 1315– 1330 (1994).

    Article  CAS  Google Scholar 

  20. Dworetzky, S. I., Trojnack, J. T. & Gribkoff, V. K. Cloning and expression of a human large-conductance calcium-activated potassium channel. Mol. Brain Res. 27, 189–193 (1994).

    Article  CAS  Google Scholar 

  21. McCobb, D. P. et al. A human calcium-activated potassium channel gene expressed in vascular smooth muscle. Am. J. Physiol. 269, H767–H777 (1995).

    CAS  PubMed  Google Scholar 

  22. Blatz, A. L. & Magelby, K. L. Calcium-activated potassium channels . Trends Neurosci. 10, 463– 467 (1987).

    Article  CAS  Google Scholar 

  23. Reinhart, P. H., Chung, S. & Levitan, I. B. A family of calcium-dependent potassium channels from rat brain. Neuron 2, 1031– 1041 (1989).

    Article  CAS  Google Scholar 

  24. Tabcharani, J. A. & Misler, S. Ca2+-activated K+ channel in rat pancreatic islet B cells: permeation, gating, and blockade by cations. Biochim. Biophys. Acta 982 , 62–72 (1989).

    Article  CAS  Google Scholar 

  25. Perez, G. J., Toro, L., Erulkar, S. D. & Stephani, E. Characterization of large-conductance, calcium-activated potassium channels from human myometrium . Am. J. Obstet. Gynecol. 168, 652– 660 (1993).

    Article  CAS  Google Scholar 

  26. Lewis, R. S. & Hudspeth, A. J. Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature 304, 538–541 (1983).

    Article  CAS  Google Scholar 

  27. Florman, H. M. Sequential focal and global elevations of sperm intracellular Ca2+ are initiated by the zona pellucida during acrosomal exocytosis. Dev. Biol. 165, 152–164 (1994).

    Article  CAS  Google Scholar 

  28. Babcock, D. F. & Pfeiffer, D. R. Independent elevation of cytosolic [Ca2+] and pH of mammalian sperm by voltage-dependent and pH-sensitive mechanisms. J. Biol. Chem. 262, 15041–15047 (1987).

    CAS  PubMed  Google Scholar 

  29. Wei, A., Solaro, C., Lingle, C. & Salkoff, L. Calcium sensitivity of BK-type KCa channels determined by a separable domain. Neuron 13, 671–681 ( 1994).

    Article  CAS  Google Scholar 

  30. Heginbotham, L., Abramson, T. & MacKinnon, R. A functional connection between the pores of distantly related ion channels as revealed by mutant K+ channels. Science 258, 1152–1155 ( 1992).

    Article  CAS  Google Scholar 

  31. Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959 –3970 (1991).

    Article  CAS  Google Scholar 

  32. Joiner, W. J. et al. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat. Neurosci. 1, 462–469 ( 1998).

    Article  CAS  Google Scholar 

  33. Schreiber, M. & Salkoff, L. A novel calcium-sensing domain in the BK channel. Biophys. J. 73, 1355– 1363 (1997).

    Article  CAS  Google Scholar 

  34. Papazian, D. M., Timpe, L. C., Jan, Y. N. & Jan, L. Y. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349, 305–310 ( 1991).

    Article  CAS  Google Scholar 

  35. Seoh, S. A., Sigg, D., Papazian, D. M. & Bezanilla, F. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16, 1159– 1167 (1996).

    Article  CAS  Google Scholar 

  36. Meera, P., Wallner, M., Song, M. & Toro, L. Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc. Natl. Acad. Sci. USA 94, 14066–14071 (1997).

    Article  CAS  Google Scholar 

  37. Pauling, L. Nature of the Chemical Bond and Structure of Molecules and Crystals 3rd Ed. (Cornell Univ. Press, Ithaca, New York, 1960).

    Google Scholar 

  38. Hironaka, T. & Morimoto, S. Intracellular chloride concentration and evidence for the existence of a chloride pump in frog skeletal muscle . Jpn. J. Physiol. 30, 357– 363 (1980).

    Article  CAS  Google Scholar 

  39. Steele, J. A. Chloride action potentials and currents in embryonic skeletal muscle of the chick. J. Cell Physiol. 142, 603– 609 (1990).

    Article  CAS  Google Scholar 

  40. Linás, R., Sugimori, M. & Silver, R. B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677– 679 (1992).

    Article  Google Scholar 

  41. Clapham, D. E. Calcium signaling. Cell 80, 259– 268 (1995).

    Article  CAS  Google Scholar 

  42. Wagner, S., Castel, M., Gainer, H. & Yarom, Y. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387, 598–603 ( 1997).

    Article  CAS  Google Scholar 

  43. Owens, D. F., Boyce, L. H., Davis, M. B. & Kriegstein, A. R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J. Neurosci. 16, 6414–6423 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Magelby and C. Nimigean for comments and suggestions and members of the Salkoff lab and M. Nonet lab for technical help and suggestions. Support from NIH to L.S. and NIH GM07200 to A.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Salkoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, A., Dourado, M., Butler, A. et al. SLO-2, a K+ channel with an unusual Cl dependence. Nat Neurosci 3, 771–779 (2000). https://doi.org/10.1038/77670

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing