Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Embryonic retinoic acid synthesis is essential for early mouse post-implantation development

Abstract

A number of studies have suggested that the active derivative of vitamin A, retinoic acid (RA), may be important for early development of mammalian embryos1,2. Severe vitamin A deprivation in rodents results in maternal infertility3, precluding a thorough investigation of the role of RA during embryogenesis. Here we show that production of RA by the retinaldehyde dehydrogenase-2 (Raldh2) enzyme4,5 is required for mouse embryo survival and early morphogenesis. Raldh2 is an NAD-dependent aldehyde dehydrogenase with high substrate specificity for retinaldehyde4,5. Its pattern of expression during mouse development has suggested that it may be responsible for embryonic RA synthesis4,6. We generated a targeted disruption of the mouse Raldh2 gene and found that Raldh2–/– embryos, which die at midgestation without undergoing axial rotation (body turning), exhibit shortening along the anterioposterior axis and do not form limb buds. Their heart consists of a single, medial, dilated cavity. Their frontonasal region is truncated and their otocysts are severely reduced. These defects result from a block in embryonic RA synthesis, as shown by the lack of activity of RA-responsive transgenes, the altered expression of an RA-target homeobox gene and the near full rescue of the mutant phenotype by maternal RA administration. Our data establish that RA synthesized by the post-implantation mammalian embryo is an essential developmental hormone whose lack leads to early embryo death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Morphological abnormalities of Raldh2-/- embryos.
Figure 2: Histological analysis of 9.5-dpc embryos.
Figure 3: Whole-mount in situ analysis of Raldh2–/– embryos.
Figure 4: Altered RA-responsive transgene activity and RA-mediated phenotypic rescue of Raldh2 mutants.
Figure 5: Analysis of Otx2 and Hoxa1 transcript expression in Raldh2-/- embryos.

Similar content being viewed by others

References

  1. Conlon, R.A. Retinoic acid and pattern formation in vertebrates. Trends Genet. 11, 314–319 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  2. Kastner, P., Mark, M. & Chambon, P. Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83, 859–869 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Dickman, E.D., Thaller, C. & Smith, S.M. Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124, 3111–3121 ( 1997).

    CAS  PubMed  Google Scholar 

  4. Zhao, D. et al. Molecular identification of a major retinoic-acid synthesizing enzyme: a retinaldehyde-specific dehydrogenase. Eur. J. Biochem. 240, 15–22 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, X., Penzes, P. & Napoli, J.L. Cloning of a cDNA encoding an aldehyde dehydrogenase and its expression in E. coli. J. Biol. Chem. 271, 16288–16293 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Niederreither, K., McCaffery, P., Dräger, U.C., Chambon, P. & Dollé, P. Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mech. Dev. 62, 67–78 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Olson, E.N. & Srivastava, D. Molecular pathways controlling heart development. Science 272, 671– 676 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Represa, J., Leon, Y., Miner, C. & Giraldez, F. The int-2 proto-oncogene is responsible for induction of the inner ear. Nature 353, 561–563 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  9. Martin, G.R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Biben, C. & Harvey, R. Homeodomain factor Nkx2-5 controls left/right asymmetric expression of bHLH gene eHand during murine heart development. Genes Dev. 11, 1357– 1369 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Twal, W., Roze, L. & Zile, M.H. Anti-retinoic acid monoclonal antibody localizes all- trans-retinoic acid in target cells and blocks normal development in early quail embryos. Dev. Biol. 168, 225– 234 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Rossant, J., Zirnbigl, R., Cado, D., Shago, M. & Giguère, V. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev. 5, 1333– 1344 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Mendelsohn, C., Ruberte, E., LeMeur, M., Morriss-Kay, G. & Chambon, P. Developmental analysis of the retinoic acid-inducible RAR-β2 promoter in trangenic animals. Development 113, 723–734 (1991).

    CAS  PubMed  Google Scholar 

  14. McCaffery, P., Posch, K.C., Napoli, J.L., Gudas, L.J. & Dräger, U.C. Changing patterns of the retinoic acid system in the developing retina. Dev. Biol. 158 , 390–399 (1993).

    Article  CAS  Google Scholar 

  15. Ang, H.L. & Duester, G. Initiation of retinoid signaling in primitive streak mouse embryos: spatiotemporal expression patterns of receptors and metabolic enzymes for ligand synthesis. Dev. Dyn. 208, 536-543 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Moss, J.B. et al. Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev. Biol. 199, 55–71 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Langston, A.W. & Gudas, L.J. Identification of a retinoic acid responsive enhancer 3´ of the murine homeobox gene Hox-1.6. Mech. Dev. 38, 217– 227 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Dupé, V. et al. In vivo functional analysis of the Hoxa-1 3´ retinoic acid response element (3´RARE). Development 124, 339–410 (1997).

    Google Scholar 

  19. Ang, S.L., Conlon, R.A., Jin, O. & Rossant, J. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979– 2989 (1994).

    CAS  PubMed  Google Scholar 

  20. Simeone, A. et al. Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech. Dev. 51, 83–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Y.P., Huang, L., Russo, A.F. & Solursh, M. Retinoic acid is enriched in Hensen's node and is developmentally regulated in the early chick embryo. Proc. Natl Acad. Sci. USA 89, 10056–10059 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hogan, B.L., Thaller, C. & Eichele, G. Evidence that Hensen's node is a site of retinoic acid synthesis. Nature 359, 237– 241 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Ang, H.L., Deltour, L., Hayamizu, T.F., Zgombic-Knight, M. & Duester, G. Retinoic acid synthesis in mouse embryos during gastrulation and craniofacial development linked to class IV alcohol dehydrogenase gene expression. J. Biol. Chem. 271, 9526–9534 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Blumberg, B. An essential role for retinoid signaling in anteroposterior neural specification and neuronal differentiation. Semin. Cell Dev. Biol. 8, 417–428 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Beddington, R.S.P. & Robertson, E.J. Anterior patterning in mouse. Trends Genet. 14, 277– 284 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Maden, M., Sonneveld, E., van der Saag, P.T. & Gale, E. The distribution of endogenous retinoic acid in the chick embryo: implications for developmental mechanisms. Development 125, 4133–4144 (1998).

    CAS  PubMed  Google Scholar 

  27. Dierich, A. & Dollé, P. Gene targeting in embryonic stem cells. in Methods in Developmental Toxicology and Biology (eds Klug, S. & Thiel, R.) 111-123 (Blackwell Science, Oxford,1997).

    Google Scholar 

  28. Décimo, D., Georges-Labouesse, E. & Dollé, P. In situ hybridization of nucleic acid probes to cellular RNA. in Gene Probes 2–A Practical Approach (eds Hames, B.D. & Higgins, S.J.) 183-266 (Oxford University Press, Oxford, 1995).

    Google Scholar 

  29. Neela, J. & Raman, L. The relationship between maternal nutritional status and spontaneous abortion. Natl Med. J. India 10, 15–16 ( 1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Dierich and M. Le Meur for supervising ES cell and animal facility work; N. Messadeq for the scanning electron micrographs; B. Schuhbaur and V.Fraulob for technical assistance; J. Rossant for providing RAREhsplacZ mice; and S.L. Ang (Otx2), P. Bouillet (Meox1), G. Gradwohl (Hand1), J. Grippo (Hoxa1), B. Herrmann (T), B. Hogan (Fgf10), A.P. McMahon (Fgf3) and G. Martin (Fgf8) for in situ hybridization probes. This work was supported by funds from the Centre National de la Recherche Scientifique, the Institut National de la Santé et de la Recherche Médicale, the Collège de France, the Hôpitaux Universitaires de Strasbourg, the Association pour la Recherche sur le Cancer, the Fondation pour la Recherche Médicale and Bristol-Myers Squibb. K.N. was supported by a fellowship from the Université Louis Pasteur (Strasbourg).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Chambon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niederreither, K., Subbarayan, V., Dollé, P. et al. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21, 444–448 (1999). https://doi.org/10.1038/7788

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/7788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing