Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation

Abstract

A pool of stem cells that arise from the mesoderm during embryogenesis initiates hematopoiesis. However, factors that regulate the expansion of blood stem cells are poorly understood. We show here that cytokine-induced proliferation of primitive human hematopoietic cells could be inhibited with antibodies to hedgehog (Hh). Conversely, Sonic hedgehog (Shh) treatment induced the expansion of pluripotent human hematopoietic repopulating cells detected in immunodeficient mice. Noggin, a specific inhibitor of bone morphogenetic protein 4 (BMP-4), was capable of inhibiting Shh-induced proliferation in a similar manner to anti-Hh; however, anti-Hh had no effect on BMP-4–induced proliferation. Our study shows that Shh functions as a regulator of primitive hematopoietic cells via mechanisms that are dependent on downstream BMP signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression analysis of the genes encoding Shh, putative receptors and ef-fectors in human hemato-poietic tissue.
Figure 2: Proliferative and clonogenic progenitor capacity of CD34+CD38Lin cells after treatment with anti-Hh.
Figure 3: In vitro analysis of primary human CD34+CD38Lin cells cultured with human Shh and Dhh proteins.
Figure 4: Analysis of engraftment in NOD-SCID mice with CD34+CD38Lin cells cultured in the presence of Hh proteins and anti-Hh.
Figure 5: Regulation of BMP-4 and Noggin expression in primitive human hematopoietic cells.
Figure 6: Functional analysis of Noggin- and Hh-blocking antibodies in response to BMP-4 and Shh in primitive human hematopoietic cells.
Figure 7

Similar content being viewed by others

References

  1. Dieterlen-Lievre, F., Godin, I. & Pardanaud, L. Where do hematopoietic stem cells come from? Int. Arch. Allergy Immunol. 112, 3–8 (1997).

    Article  CAS  Google Scholar 

  2. Morrison, S. J., Wandycz, A. M., Hemmati, H. D., Wright, D. E. & Weissman, I. L. Identification of a lineage of multipotent hematopoietic progenitors. Development 124, 1929–1939 (1997).

    CAS  Google Scholar 

  3. Domen, J. & Weissman, I. L. Self-renewal, differentiation or death: regulation and manipulation of hematopoietic stem cell fate. Mol. Med. Today 5, 201–208 (1999).

    Article  CAS  Google Scholar 

  4. Dieterlen-Lievre, F. Hematopoiesis: progenitors and their genetic program. Curr. Biol. 8, 727–730 (1998).

    Article  Google Scholar 

  5. Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853 (1993).

    CAS  Google Scholar 

  6. Eaves, C. et al. Introduction to stem cell biology in vitro. Threshold to the future. Ann. NY Acad. Sci. 872, 1–8 (1999).

    Article  CAS  Google Scholar 

  7. Williams, D. A. Ex vivo expansion of hematopoietic stem and progenitor cells–robbing Peter to pay Paul? Blood 81, 3169–3172 (1993).

    CAS  Google Scholar 

  8. Bhatia, M. et al. Bone morphogenetic proteins regulate the developmental program of human hematopoietic stem cells. J. Exp. Med. 189, 1139–1148 (1999).

    Article  CAS  Google Scholar 

  9. Mulligan, R. C. The basic science of gene therapy. Science 260, 926–932 (1993).

    Article  CAS  Google Scholar 

  10. Halene, S. & Kohn, D. B. Gene therapy using hematopoietic stem cells: sisyphus approaches the crest. Hum. Gene Ther. 11, 1259–1267 (2000).

    Article  CAS  Google Scholar 

  11. Dick, J. E. Gene therapy turns the corner. Nature Med. 6, 624–626 (2000).

    Article  CAS  Google Scholar 

  12. Mead, P. E. & Zon, L. I. Molecular insights into early hematopoiesis. Curr. Opin. Hematol. 5, 156–160 (1998).

    Article  CAS  Google Scholar 

  13. Zon, L. I. Developmental biology of hematopoiesis. Blood 86, 2876–2891 (1995).

    CAS  Google Scholar 

  14. Dosch, R., Gawantka, V., Delius, H., Blumenstock, C. & Niehrs, C. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 124, 2325–2334 (1997).

    CAS  Google Scholar 

  15. Maeno, M. et al. The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 88, 1965–1972 (1996).

    CAS  Google Scholar 

  16. Dale, L. & Jones, C. M. BMP signalling in early Xenopus development. Bioessays 21, 751–760 (1999).

    Article  CAS  Google Scholar 

  17. Miyazono, K. Positive and negative regulation of TGF-β signaling. J. Cell Sci. 113, 1101–1109 (2000).

    CAS  Google Scholar 

  18. Perrimon, N. Hedgehog and beyond. Cell 80, 517–520 (1995).

    Article  CAS  Google Scholar 

  19. Farrington, S. M., Belaoussoff, M. & Baron, M. H. Winged-helix, Hedgehog and Bmp genes are differentially expressed in distinct cell layers of the murine yolk sac. Mech. Dev. 62, 197–211 (1997).

    Article  CAS  Google Scholar 

  20. Weed, M., Mundlos, S. & Olsen, B. R. The role of sonic hedgehog in vertebrate development. Matrix Biol. 16, 53–58 (1997).

    Article  CAS  Google Scholar 

  21. Roberts, D. J. et al. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121, 3163–3174 (1995).

    CAS  Google Scholar 

  22. Murone, M., Rosenthal, A. & de Sauvage, F. J. Hedgehog signal transduction: from flies to vertebrates. Exp. Cell Res. 253, 25–33 (1999).

    Article  CAS  Google Scholar 

  23. Murtaugh, L. C., Chyung, J. H. & Lassar, A. B. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev. 13, 225–237 (1999).

    Article  CAS  Google Scholar 

  24. Stone, D. M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996).

    Article  CAS  Google Scholar 

  25. Hahn, H. et al. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J. Biol. Chem. 271, 12125–12128 (1996).

    Article  CAS  Google Scholar 

  26. Hammerschmidt, M., Brook, A. & McMahon, A. P. The world according to hedgehog. Trends Genet. 13, 14–21 (1997).

    Article  CAS  Google Scholar 

  27. Robbins, D. J. et al. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell 90, 225–234 (1997).

    Article  CAS  Google Scholar 

  28. Perler, F. B. Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92, 1–4 (1998).

    Article  CAS  Google Scholar 

  29. McMahon, A. P. More surprises in the Hedgehog signaling pathway. Cell 100, 185–188 (2000).

    Article  CAS  Google Scholar 

  30. Ruiz i Altaba, A. Catching a Gli-mpse of Hedgehog. Cell 90, 193–196 (1997).

    Article  Google Scholar 

  31. Motoyama, J. et al. Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nature Genet. 20, 54–57 (1998).

    Article  CAS  Google Scholar 

  32. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 10109–1113 (1997).

    Article  Google Scholar 

  33. Ingham, P. W. Transducing Hedgehog: the story so far. EMBO J. 17, 3505–3511 (1998).

    Article  CAS  Google Scholar 

  34. Iwamoto, M., Enomoto-Iwamoto, M. & Kurisu, K. Actions of hedgehog proteins on skeletal cells. Crit. Rev. Oral Biol. Med. 10, 477–486 (1999).

    Article  CAS  Google Scholar 

  35. Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 383, 407–413 (1996).

    Article  CAS  Google Scholar 

  36. Ingham, P. W. Boning up on Hedgehog's movements. Nature 394, 16–17 (1998).

    Article  CAS  Google Scholar 

  37. Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nature Med. 2, 1329–1337 (1996).

    Article  CAS  Google Scholar 

  38. Ohlmeyer, J. T. & Kalderon, D. Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature 396, 749–753 (1998).

    Article  CAS  Google Scholar 

  39. Wang, L. C. et al. Regular articles: conditional disruption of hedgehog signaling pathway defines its critical role in hair development and regeneration. J. Invest. Dermatol. 114, 901–908 (2000).

    Article  CAS  Google Scholar 

  40. Outram, S. V., Varas, A., Pepicelli, C. V. & Crompton, T. Hedgehog Signaling Regulates Differentiation from Double-Negative to Double-Positive Thymocyte. Immunity 13, 187–197 (2000).

    Article  CAS  Google Scholar 

  41. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    Article  CAS  Google Scholar 

  42. Marigo, V. et al. Sonic hedgehog regulates patterning in early embryos. Biochem. Soc. Symp. 62, 51–60 (1996).

    CAS  Google Scholar 

  43. Cashman, J. D. et al. Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood 89, 4307–4316 (1997).

    CAS  Google Scholar 

  44. Holyoake, T. L., Nicolini, F. E. & Eaves, C. J. Functional differences between transplantable human hematopoietic stem cells from fetal liver, cord blood, and adult marrow. Exp. Hematol. 27, 1418–1427 (1999).

    Article  CAS  Google Scholar 

  45. Bhatia, M., Wang, J. C. Y., Kapp, U., Bonnet, D. & Dick, J. E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl Acad. Sci. USA 94, 5320–5325 (1997).

    Article  CAS  Google Scholar 

  46. Dick, J. E., Bhatia, M., Gan, O., Kapp, U. & Wang, J. C. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 15, S199–203 (1997).

    Article  Google Scholar 

  47. Wagner, J. E. Umbilical cord transplantation. Leukemia 12, S30–32 (1998).

    Google Scholar 

  48. Lapidot, T. et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in scid mice. Science 255, 1137–1141 (1992).

    Article  CAS  Google Scholar 

  49. Bhatia, M. et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186, 619–624 (1997).

    Article  CAS  Google Scholar 

  50. McMahon, J. A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev. 12, 1438–1452 (1998).

    Article  CAS  Google Scholar 

  51. Oshima, A. et al. Cloning, sequencing, and expression of cDNA for human β-glucuronidase. Proc. Natl Acad. Sci. USA 84, 685–689 (1987).

    Article  CAS  Google Scholar 

  52. Morrison, S. J., Shah, N. M. & Anderson, D. J. Regulatory mechanisms in stem cell biology. Cell 88, 287–298 (1997).

    Article  CAS  Google Scholar 

  53. Weissman, I. L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446 (2000).

    Article  CAS  Google Scholar 

  54. Mathey-Prevot, B. & Perrimon, N. Mammalian and Drosophila blood: JAK of all trades? Cell 92, 697–700 (1998).

    Article  CAS  Google Scholar 

  55. Gallacher, L. et al. Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95, 2813–2820 (2000).

    CAS  Google Scholar 

  56. Gallacher, L. et al. Identification of novel circulating human embryonic blood stem cells. Blood 96, 1740–1747 (2000).

    CAS  Google Scholar 

  57. Bonnet, D., Bhatia, M., Wang, J. C., Kapp, U. & Dick, J. E. Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice. Bone Marrow Transplant. 23, 203–209 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the labor and delivery departments of St. Joseph's Hospital and London Health Sciences, London, Ontario, especially M. Watson and J. Popma, for providing cord blood specimens. We also thank M. Underhill for critically reading the manuscript. Supported by grant MT-15063 from the Medical Research Council (MRC) of Canada and a scholarship award MSH-35681 (to M. B.) also from the MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, G., Murdoch, B., Wu, D. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2, 172–180 (2001). https://doi.org/10.1038/84282

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84282

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing