Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein

Abstract

Citrullinaemia (CTLN) is an autosomal recessive disease caused by deficiency of argininosuccinate synthetase (ASS). Adult-onset type II citrullinaemia (CTLN2) is characterized by a liver-specific ASS deficiency with no abnormalities in hepatic ASS mRNA or the gene ASS (refs 1–17). CTLN2 patients (1/100,000 in Japan13) suffer from a disturbance of consciousness and coma, and most die with cerebral edema within a few years of onset. CTLN2 differs from classical citrullinaemia (CTLN1, OMIM 215700) in that CTLN1 is neonatal or infantile in onset, with ASS enzyme defects (in all tissues) arising due to mutations in ASS on chromosome 9q34 (refs 18–21). We collected 118 CTLN2 families, and localized the CTLN2 locus to chromosome 7q21.3 by homozygosity mapping analysis of individuals from 18 consanguineous unions. Using positional cloning we identified a novel gene, SLC25A13, and found five different DNA sequence alterations that account for mutations in all consanguineous patients examined. SLC25A13 encodes a 3.4-kb transcript expressed most abundantly in liver. The protein encoded by SLC25A13, named citrin, is bipartite in structure, containing a mitochondrial carrier motif and four EF-hand domains, suggesting it is a calcium-dependent mitochondrial solute transporter with a role in urea cycle function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic mapping of the CTLN2 locus on chromosome 7.
Figure 2: List of 18 CTLN2 patients from consanguineous parents and the corresponding marker haplotypes.
Figure 3: A physical map of the CTLN2 locus at 7q21.3.
Figure 4: Comparative alignment of citrin with related proteins.
Figure 5: Expression profile of SLC25A13.
Figure 6: Predicted topological model of human citrin and mutations in CTLN2.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Saheki, T. et al. Qualitative and quantitative abnormalities of argininosuccinate synthetase in citrullinemia. Clin. Chim. Acta 109, 325–335 (1981).

    Article  CAS  Google Scholar 

  2. Saheki, T. et al. Argininosuccinate synthetase activity in cultured skin fibroblasts of citrullinemic patients. Clin. Chim. Acta 118, 93–97 (1982).

    Article  CAS  Google Scholar 

  3. Saheki, T. et al. Enzymatic analysis of citrullinemia (12 cases) in Japan. Adv. Exp. Med. Biol. 153, 63–76 (1983).

    Article  Google Scholar 

  4. Saheki, T., Sase, M., Nakano, K. & Yagi, Y. Arginine metabolism in citrullinemic patients. in Guanidines (eds Mori, A., Cohen, B.D. & Lowenthal, A.) 149–158 (Plenum, New York, 1985).

    Chapter  Google Scholar 

  5. Sase, M. et al. Level of translatable messenger RNA coding for argininosuccinate synthetase in the liver of the patients with quantitative-type citrullinemia. Hum. Genet. 69, 130–134 (1985).

    Article  CAS  Google Scholar 

  6. Kobayashi, K. et al. Messenger RNA coding for argininosuccinate synthetase in citrullinemia. Am. J. Hum. Genet. 38, 667– 680 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Saheki, T. et al. Serum amino acid pattern of type II citrullinemic patients and effect of oral administration of citrulline. J. Clin. Biochem. Nutr. 1, 129–142 ( 1986).

    Article  Google Scholar 

  8. Saheki, T. et al. Increased urinary excretion of argininosuccinate in type II citrullinemia. Clin. Chim. Acta 170, 297– 304 (1987).

    Article  CAS  Google Scholar 

  9. Imamura, Y. et al. Clinical application of enzyme immunoassay in the analysis of citrullinemia. Clin. Chim. Acta 164, 201–208 (1987).

    Article  CAS  Google Scholar 

  10. Saheki, T., Kobayashi, K. & Inoue, I. Hereditary disorders of the urea cycle in man: biochemical and molecular approaches. Rev. Physiol. Biochem. Pharmacol. 108, 21–68 (1987).

    Article  CAS  Google Scholar 

  11. Yagi, Y. et al. The heterogeneous distribution of argininosuccinate synthetase in the liver of type II citrullinemic patients: its specificity and possible clinical implications. Am. J. Clin. Pathol. 89, 735–741 (1988).

    Article  CAS  Google Scholar 

  12. Todo, S. et al. Orthotopic liver transplantation for urea cycle enzyme deficiency. Hepatology 15, 419–422 (1992).

    Article  CAS  Google Scholar 

  13. Kobayashi, K. et al. A search for the primary abnormality in adult-onset type II citrullinemia. Am. J. Hum. Genet. 53, 1024 –1030 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobayashi, K., Nakata, M., Terazono, H., Shinsato, T. & Saheki, T. Pancreatic secretory trypsin inhibitor gene is highly expressed in the liver of adult-onset type II citrullinemia. FEBS Lett. 372, 69–73 ( 1995).

    Article  CAS  Google Scholar 

  15. Yazaki, M. et al. Complete neurological recovery of an adult patient with type II citrullinemia after living related partial liver transplantation. Transplantation 62, 1679–1681 (1996).

    Article  CAS  Google Scholar 

  16. Kobayashi, K., Horiuchi, M. & Saheki, T. Pancreatic secretory trypsin inhibitor as a diagnostic marker for adult-onset type II citrullinemia. Hepatology 25, 1160–1165 (1997).

    Article  CAS  Google Scholar 

  17. Kawamoto, S. et al. Orthotopic liver transplantation for adult-onset type II citrullinemia. Clin. Transplant. 11, 453– 458 (1997).

    CAS  PubMed  Google Scholar 

  18. Kobayashi, K., Jackson, M.J., Tick, D.B., O'Brien, W.E. & Beaudet, A.L. Heterogeneity of mutations in argininosuccinate synthetase causing human citrullinemia. J. Biol. Chem. 265, 11361–11367 ( 1990).

    CAS  PubMed  Google Scholar 

  19. Kobayashi, K., Shaheen, N., Terazono, H. & Saheki, T. Mutations in argininosuccinate synthetase mRNA of Japanese patients, causing classical citrullinemia. Am. J. Hum. Genet. 55, 1103–1112 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kobayashi, K. et al. Nature and frequency of mutations in the argininosuccinate synthetase gene that cause classical citrullinemia. Hum. Genet. 96, 454–463 ( 1995).

    Article  CAS  Google Scholar 

  21. Kakinoki, H., Kobayashi, K., Terazono, H., Nagata, Y. & Saheki, T. Mutations and DNA diagnoses of classical citrullinemia. Hum. Mutat. 9, 250– 259 (1997).

    Article  CAS  Google Scholar 

  22. Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 ( 1987).

    Article  CAS  Google Scholar 

  23. Humbert, R. et al. The molecular basis of the human serum paraoxonase activity polymorphism. Nature Genet. 3, 73– 76 (1993).

    Article  CAS  Google Scholar 

  24. Hegele, R.A. et al. Paraoxonase-2 gene (PON2) G148 variant associated with elevated fasting plasma glucose in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 82, 3373– 3377 (1997).

    CAS  PubMed  Google Scholar 

  25. Rowles, J. et al. Cloning and characterization of PDK4 on 7q21.3 encoding a fourth pyruvate dehydrogenase kinase isoenzyme in human. J. Biol. Chem. 271, 22376–22382 ( 1996).

    Article  CAS  Google Scholar 

  26. Crackower, M.A. et al. Cloning and characterization of two cytoplasmic dynein intermediate chain genes in mouse and human. Genomics 55, 257–267 (1999).

    Article  CAS  Google Scholar 

  27. Kozak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7, 563–574 (1996).

    Article  CAS  Google Scholar 

  28. Kuan, J. & Saier, M.H. Jr The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit. Rev. Biochem. Mol. Biol. 28, 209–233 (1993).

    Article  CAS  Google Scholar 

  29. Kawasaki, H. & Kretsinger, R.H. Calcium-binding proteins. Protein Profile 1, 343–517 (1994).

    CAS  PubMed  Google Scholar 

  30. >del Arco, A. & Satrustegui, J. Molecular cloning of aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J. Biol. Chem. 273, 23327–23334 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the patients, their families and referring physicians, in particular: K. Takahashi, K. Furuta, O. Hashimoto, Y. Shiozaki, Y. Yamauchi, Y. Itakura, Y. Yamamura, M. Ikeda, M. Kanai, A. Kusakabe, M. Tsuda, R. Kumashiro, K. Tanikawa, I. Ohta, N. Shiohama, K. Takeuchi, T. Suenaga, A. Kawata, M. Yazaki and S. Ikeda; M. Wada, M. Kuwano, S. Asakawa and N. Shimizu for informatics support; M. Tanaka for assistance in the preparation of the manuscript; and Y. Masunaga for contribution to this study. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture in Japan, the Kodama Foundation for Research in Medical Science and The Medical Research Council of Canada (MRC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keiko Kobayashi or Stephen W. Scherer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, K., Sinasac, D., Iijima, M. et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet 22, 159–163 (1999). https://doi.org/10.1038/9667

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9667

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing