Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants?

Abstract

Hemoglobin-based blood substitutes are being developed as oxygen-carrying agents for the prevention of ischemic tissue damage and hypovolemic (low blood volume) shock. The ability of cell-free hemoglobin blood substitutes to affect vascular tone through the removal of nitric oxide has also prompted an evaluation of their usefulness for maintaining blood pressure in critically ill patients. Before the clinical potential of these substitutes can be fully realized, however, concerns remain as to the intrinsic toxicity of the hemoglobin molecule, particularly the interference of the heme prosthetic group with the tissue oxidant/antioxidant balance. This review provides some insights into the complex redox chemistry of hemoglobin and places an emphasis on how current knowledge may be exploited both to selectively enhance/suppress specific chemical reaction pathway(s) and to ultimately design safer hemoglobin-based therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of hemoglobin solutions as blood substitutes.
Figure 2: Correlation between oxygen affinity, auto-oxidation, and oxidative modification reaction pathways of hemoglobin.
Figure 3: The balance between NO and O2•– in the vasculature.

Similar content being viewed by others

References

  1. Bunn, H.F. & Forget, B.G. Hemoglobin: molecular genetic and clinical aspects (W.B. Saunders Co, Philadelphia; 1986).

    Google Scholar 

  2. Winslow, R.M. Hemoglobin-based red cell substitutes. (Johns Hopkins University Press, Baltimore, 1992).

    Google Scholar 

  3. Chang, T.M.S. Blood substitutes: principles, methods, products, and clinical trials. Vol. 1. (ed. Chang, T.M.S.) (Karger-Lands System, New York, 1998).

    Google Scholar 

  4. Nelson, D. in Blood substitutes: principles, methods, products and clinical trials Vol. II (ed. Chang, T.M.S.) 39–57 (Karger-Landes System, New York; 1998).

    Google Scholar 

  5. D'Agnillo, F. & Alayash, A.I. Site specific modifications and toxicity of blood substitutes: the case of diaspirin cross-linked hemoglobin. Adv. Drug Deliv. Rev. (in press).

  6. Looker, D. et al. A human recombinant haemoglobin designed for use as a blood substitute. Nature 356, 258–260 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Talarico, T., Swank, A. & Privalle, C. Autoxidation of pyridoxylated hemoglobin polyoxyethYlene conjugate. Biochim. Biophys. Acta 250, 350–358 (1998).

    Google Scholar 

  8. Song, D. et al. Comparison of the efficacy of blood and PEG-hemoglobin recovery of newborn piglets from hemorrhagic hypotension. Transfusion 35, 552–558 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Adamson, J.G. & Moore, C. in Blood substitutes: principles, methods, products and clinical trials Vol. II (ed. Chang, T.M.S.) 62–81 (Karger-Landes System, New York; 1998).

  10. Gould, S., Sehgal, L.R., Rosen, A.L., Sehgal, A.L. & Moss, G.S. The efficacy of polymerized pyridoxylated hemoglobin solution as an O2 carrier. Ann. Surg. 211, 394–398 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, R., Atsum, A., Jacobs, E.E., Austen, W.G. & Vlahakes, G.J. Ultrapure stroma free, polymerized bovine hemoglobin solutions: evaluation of renal toxicity. J. Surg. Res. 47, 407–411 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Rudolph, A.S., Klipper, R.W., Goins, B. & Philips, W.T. In vivo biodistribution of a radiolabelled blood substitute. 99mTC-labeled liposome-encapsulated hemoglobin in an anesthetized rabbit. Proc. Natl. Acad. Sci. USA 88, 10976–10980 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sukai, H. et al. Surface modification of hemoglobin vesicles with polyethylene glycol and effects on aggregation, viscosity and blood flow during 90% exchange transfusion in anesthetized rats. Bioconjug. Chem. 8, 23–30 (1997).

    Article  Google Scholar 

  14. Chang, T.M.S. Future prospects for artificial blood. Trends Biotechnol. 17, 61–67 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Moncada, S., Palmer, R.M.S. & Higgs, E.A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  16. Peah, G., Bodenham, A.R., Mallick, A., Daily, E.K. & Prezybelski, R.J. Initial evaluation of diasprin cross-linked hemoglobin (DCLHbTM) as a vasopressor in critically ill patients. Crit. Care Med. 25, 1480–1488 (1997).

    Article  Google Scholar 

  17. Anonymous. Baxter formally pulls plug on HemAssist blood substitute, takes charges. Business News September 16 (1998).

  18. Cashon R.E. & Alayash, A.I. Reactions of human hemoglobin A0 and two crosslinked derivatives with hydrogen peroxide: differential behavior of the ferryl intermediate. Arch. Biochem. Biophys. 316, 461–469 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Rogers, M.S., Brockner Ryan, B.A., Cashon, R.E. & Alayash, A.I. Effects of polymerization on the oxygen carrying and redox properties of diaspirin crosslinked hemoglobin. Biochim. Biophys. Acta 1248, 135–142 (1995).

    Article  PubMed  Google Scholar 

  20. Vandegriff, K.D. et al. Carbon monoxide binding to human hemoglobin cross-linked between the alpha chains. J. Biol. Chem. 266, 2697–2700 (1991).

    CAS  PubMed  Google Scholar 

  21. Winslow, R.M. in Blood substitutes, new challenges. (eds Winslow, R.M., Vandegriff, K.D. & Intagliatta, M.)146–162 (Birkhauser, Boston, 1996).

    Google Scholar 

  22. Motterlini, R., Foresti, R., Vandegriff, K.D., Intagliatta,M. & Winslow, R.W. Oxidative stress response in vascular endothelial cells exposed to acellular hemoglobin solution. Am. J. Physiol. 269, H648–H655 (1995).

    CAS  PubMed  Google Scholar 

  23. Marden, M.C., Griffon, N. & Poyart, C. Oxygen delivery and autoxidation of hemoglobin. Transfus. Clin. Biol. 6, 473–480 (1995).

    Article  Google Scholar 

  24. Lee, R., Neya, K., Svizzero, T.A. & Vlahakas, G.T. Limitations of the efficacy of hemoglobin oxygen carrying solutions. J. Appl. Physiol. 78, 236–246 (1995).

    Article  Google Scholar 

  25. Faivre, B., Menu, P., Labrude, P. & Vigneron, C. Hemoglobin autooxidation/oxidation mechanisms and methemoglobin prevention or reduction processes in the blood stream. Literature review and outline of autooxidation reaction. Artif. Cells Blood Substit. Immobil. Biotechnol. 26, 17–26 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Linberg, R., Conover, C.D., Shum, K.L & Shorr, R.G.L. Hemoglobin based oxygen carriers: how much methemoglobin is too much? Artif. Cells Blood Substit. Immobil. Biotechnol. 26, 133–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Phillips, W.T. et al. Polyethylene glycol-modified liposome-encapsulated hemoglobin: a long circulating red cell substitute. J. Pharmacol. Exp. Ther. 288, 665–670 (1999).

    CAS  PubMed  Google Scholar 

  28. Alayash, A.I. & Cashon, R.E. Hemoglobin and free radicals: implications for the development of a safe blood substitute. Mol. Med. Today 1, 122–127 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. King, N.K. & Winfield, M.E. The mechanism of metmyoglobin oxidation. J. Biol. Chem. 238, 1520–1528 (1963).

    CAS  PubMed  Google Scholar 

  30. Giulivi, C. & Davies, K.J.A. A novel antioxidant role for hemoglobin. The comproportionation of ferrylhemoglobin with oxyhemoglobin. J. Biol. Chem. 265, 19453–19460 (1990).

    CAS  PubMed  Google Scholar 

  31. Svistunenko, D.A., Patel, R.P., Voloshenko, S.V. & Wilson, M.T. The globin-based radical of ferryl hemoglobin is detected in normal human blood. J. Biol. Chem. 272, 7114–7121 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Svistunenko, D.A. et al. Free radical in blood: a measure of haemoglobin autoxidation in vivo. J. Chem. Soc. Perkin Trans. 2, 2539–2543 (1997).

    Article  Google Scholar 

  33. Grisham, M.B. & Everse, J. in Peroxidases in chemistry and biology (eds Everse, J., Everse, K.E. & Grisham, M.B.) 335–344 (CRC, Boca Raton, Florida, 190091).

  34. Buettner, G.R. The pecking order of free radicals and antioxidants: lipid peroxidation, (-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300, 535–543 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Goldman, D.W., Breyer, R.J., Yeh, D., Brockner Ryan, B.A. & Alayash, A.I. Acellular hemoglobin-mediated oxidative stress toward endothelium: a role for ferryl iron. Am. J. Physiol. 44, H1046–H1053 (1998).

    Google Scholar 

  36. McLeod, L. & Alayash, A.I. Detection of a ferryl intermediate in an endothelial cell model after hypoxia/reoxygenation. Am. J. Physiol. (in press).

  37. Moore, K.P. et al. A causative role for redox cycling of myoglobin and its inhibition by alkalization in pathogenesis and treatment of rhabdomyolosis-induced renal failure. J. Biol. Chem. 273, 31731–31737 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Gulati, A., Barve, A. & Sen, A.P. Pharmacology of hemoglobin therapeutics. J. Lab. Clin. Med. 133, 112–119 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Winslow, R.M. et al. Vascular resistance and efficacy of red cell substitutes in rat hemorrhage model. J. Appl. Physiol. 85, 993–1003 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Hess, J.R., Macdonald, V.W. & Brinkley, W.W. Systemic and pulmonary hypertension after resuscitation with cell-free hemoglobin. J. Appl. Physiol. 74, 1769–1778 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Weil, M.H. & Afifi, A.A. Experimental and clinical studies on lactate and pyruvate as indicators of the severity of acute circulatory failure (shock). Circulation 41, 989–1001 (1970).

    Article  CAS  PubMed  Google Scholar 

  42. Abassi, Z. et al. Effects of polymerization on the hypertensive action of diaspirin cross-linked hemoglobin in rats. J. Lab. Clin. Med. 129, 603–610 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Rolfs, J.R. et al. Arterial blood pressure responses to cell-free hemoglobin solutions and reaction with nitric oxide. J. Biol. Chem. 273, 12123–12134 (1998).

    Google Scholar 

  44. Caron, A. et al. Cardiovacular and hemorheological effects of dextran-conjugated hemoglobin, (a)-crosslinked hemoglobin, and o-raffinose polymerized hemoglobin in hemodiluted rabbits. J. Appl. Physiol. 86,541–548 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Doyle, M., Apostol, I. & Kerwin, B.A. Glutaraldehyde modification of recombinant human hemoglobin alters its hemodynamic properties. J. Biol. Chem. 274, 2583–2591 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Wink, D.A. & Mitchell, J.B. Chemical biology of nitic oxide:insights into regulatory, cytotoxic and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 25, 434–456 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Alayash, A.I., Brockner Ryan, B.A. & Cashon, R.E. Peroxynitrite-mediated heme oxidation and protein modifications of native and chemically modified hemoglobins. Arch. Biochem. Biophys. 349, 65–73 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Lascalzo, J. Nitric oxide binding and adverse effects of cell-free hemoglobins: what makes us different from earthworms. J. Lab. Clin. Med. 129, 580–583 (1997).

    Article  Google Scholar 

  49. Liu, X. et al. Diffusion-limited reaction of free NO with erythrocytes. J. Biol. Chem. 273, 18709–18713 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Doherty, D.H. et al. Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat. Biotechnol. 16, 672–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. D'Agnillo, F. & Chang, T.M.S. Polyhemoglobin-superoxide dismutase-catalase as a blood substitute with antioxidant preoperties. Nat. Biotechnol. 16, 667–672 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Alayash, A.I., Brockner Ryan, B.A., Eich, R.E., Olson, J.S. & Cashon, R.E. Reactions of sperm whale myoglobin with hydrogen peroxide: effects of distal pocket mutations on the formation and stability of the ferryl intermediate. J. Biol. Chem. 274, 2029–2037 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Darley-Usmar, V.W. & Radomski, R. Free radicals in the vasculature—the good, the bad, and the ugly. Biochemist (Bulletin of the Biochemical Society) 13–17 (1994).

Download references

Acknowledgements

I thank B. Brockner Ryan, V. Macdonald, D. Goldman, and F. D'Agnillo for reading the manuscript and for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alayash, A. Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants?. Nat Biotechnol 17, 545–549 (1999). https://doi.org/10.1038/9849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing