Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter to the Editor
  • Published:

Targeting PD1–PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Anderson KC . The 39th David A. Karnofsky Lecture: bench-to-bedside translation of targeted therapies in multiple myeloma. J Clin Oncol 2012; 30: 445–452.

    Article  CAS  PubMed  Google Scholar 

  2. Chauhan D, Singh AV, Brahmandam M, Carrasco R, Bandi M, Hideshima T et al. Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target. Cancer Cell 2009; 16: 309–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benson Jr DM, Bakan CE, Mishra A, Hofmeister CC, Efebera Y, Becknell B et al. The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody. Blood 2010; 116: 2286–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Atanackovic D, Luetkens T, Kroger N . Coinhibitory molecule PD-1 as a potential target for the immunotherapy of multiple myeloma. Leukemia 2014; 28: 993–1000.

    Article  CAS  PubMed  Google Scholar 

  5. Ray A, Tian Z, Das DS, Coffman RL, Richardson P, Chauhan D et al. A novel TLR-9 agonist C792 inhibits plasmacytoid dendritic cell-induced myeloma cell growth and enhance cytotoxicity of bortezomib. Leukemia 2014; 28: 1716–1724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8: 793–800.

    Article  CAS  PubMed  Google Scholar 

  7. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA . Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 2012; 5: ra46.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20: 5064–5074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mullard A . New checkpoint inhibitors ride the immunotherapy tsunami. Nat Rev Drug Discov 2013; 12: 489–492.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, Hetuin D et al. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-gamma and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007; 110: 296–304.

    Article  CAS  PubMed  Google Scholar 

  11. Hallett WH, Jing W, Drobyski WR, Johnson BD . Immunosuppressive effects of multiple myeloma are overcome by PD-L1 blockade. Biol Blood Marrow Transplant 2011; 17: 1133–1145.

    Article  CAS  PubMed  Google Scholar 

  12. Rosenblatt J, Avivi I, Vasir B, Uhl L, Munshi NC, Katz T et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin Cancer Res 2013; 19: 3640–3648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamura H, Ishibashi M, Yamashita T, Tanosaki S, Okuyama N, Kondo A et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia 2013; 27: 464–472.

    Article  CAS  PubMed  Google Scholar 

  14. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ . Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kearl TJ, Jing W, Gershan JA, Johnson BD . Programmed death receptor-1/programmed death receptor ligand-1 blockade after transient lymphodepletion to treat myeloma. J Immunol 2013; 190: 5620–5628.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by National Institutes of Health Specialized Programs of Research Excellence (SPORE) grant P50100707, PO1-CA078378 and RO1 CA050947. KCA is an American Cancer Society Clinical Research Professor.

Author Contributions

DC designed the research, analyzed the data and wrote the manuscript; AR performed the experiments, analyzed the data and wrote the manuscript; YS and DSD helped in flow cytometry; PR and NCM provided clinical samples; and KCA analyzed the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D Chauhan or K C Anderson.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, A., Das, D., Song, Y. et al. Targeting PD1–PDL1 immune checkpoint in plasmacytoid dendritic cell interactions with T cells, natural killer cells and multiple myeloma cells. Leukemia 29, 1441–1444 (2015). https://doi.org/10.1038/leu.2015.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.11

This article is cited by

Search

Quick links