Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Selective gating of visual signals by microstimulation of frontal cortex

Abstract

Several decades of psychophysical and neurophysiological studies have established that visual signals are enhanced at the locus of attention1,2,3,4,5. What remains a mystery is the mechanism that initiates biases in the strength of visual representations6. Recent evidence argues that, during spatial attention, these biases reflect nascent saccadic eye movement commands7,8. We examined the functional interaction of saccade preparation and visual coding by electrically stimulating sites within the frontal eye fields (FEF) and measuring its effect on the activity of neurons in extrastriate visual cortex. Here we show that visual responses in area V4 could be enhanced after brief stimulation of retinotopically corresponding sites within the FEF using currents below that needed to evoke saccades. The magnitude of the enhancement depended on the effectiveness of receptive field stimuli as well as on the presence of competing stimuli outside the receptive field. Stimulation of non-corresponding FEF representations could suppress V4 responses. The results suggest that the gain of visual signals is modified according to the strength of spatially corresponding eye movement commands.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping receptive fields and evoking saccades.
Figure 2: Effect of FEF stimulation on the response of a V4 neuron.
Figure 3: Effect of FEF stimulation on the responses of populations of V4 neurons.

Similar content being viewed by others

References

  1. Sperling, G. & Melchner, M. J. The attention operating characteristic: examples from visual search. Science 202, 315–318 (1978)

    Article  ADS  CAS  Google Scholar 

  2. Blaser, E., Sperling, G. & Lu, Z. L. Measuring the amplification of attention. Proc. Natl Acad. Sci. USA 96, 11681–11686 (1999)

    Article  ADS  CAS  Google Scholar 

  3. Moran, J. H. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985)

    Article  ADS  CAS  Google Scholar 

  4. Haenny, P. E. & Schiller, P. H. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp. Brain Res. 69, 225–244 (1988)

    Article  CAS  Google Scholar 

  5. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993)

    Article  CAS  Google Scholar 

  6. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995)

    Article  CAS  Google Scholar 

  7. Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of premotor theory of attention. Neuropsychologia 25, 31–40 (1987)

    Article  CAS  Google Scholar 

  8. Moore, T. & Fallah, M. Control of eye movements and spatial attention. Proc. Natl Acad. Sci. USA 98, 1273–1276 (2001)

    Article  ADS  CAS  Google Scholar 

  9. van Hooff, J. A. R. A. M. in Non-Verbal Communication Ch. 7 (ed. Hinde, R. A.) Ch. 7 (Cambridge Univ. Press, Cambridge, UK, 1972)

    Google Scholar 

  10. Shepherd, M., Findlay, J. M. & Hockey, R. J. The relationship between eye movements and spatial attention. Q. J. Exp. Psychol. A 38, 475–491 (1986)

    Article  CAS  Google Scholar 

  11. Hoffman, J. E. & Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 57, 787–795 (1995)

    Article  CAS  Google Scholar 

  12. Tehovnik, E. J., Sommer, M. A., Chou, I. H., Slocum, W. M. & Schiller, P. H. Eye fields in the frontal lobes of primates. Brain Res. Brain Res. Rev. 32, 413–448 (2000)

    Article  CAS  Google Scholar 

  13. Bruce, C. J., Goldberg, M. E., Bushnell, M. C. & Stanton, G. B. Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol. 54, 714–734 (1985)

    Article  CAS  Google Scholar 

  14. Penfield, W. & Rasmussen, T. The Cerebral Cortex of Man: A Clinical Study of Localization of Function (Macmillan, New York, 1950)

    Google Scholar 

  15. Godoy, J., Luders, H., Dinner, D. S., Morris, H. H. & Wyllie, E. Versive eye movements elicited by cortical stimulation of the human brain. Neurology 40, 296–299 (1990)

    Article  CAS  Google Scholar 

  16. Schiller, P. H. & Tehovnik, E. J. Look and see: how the brain moves your eyes about. Prog. Brain Res. 134, 127–142 (2001)

    Article  CAS  Google Scholar 

  17. Burman, D. D. & Bruce, C. J. Suppression of task-related saccades by electrical stimulation in the primate's frontal eye field. J. Neurophysiol. 77, 2252–2267 (1997)

    Article  CAS  Google Scholar 

  18. Moore, T., Tolias, A. S. & Schiller, P. H. Visual representations during saccadic eye movements. Proc. Natl Acad. Sci. USA 95, 8981–8984 (1998)

    Article  ADS  CAS  Google Scholar 

  19. Schall, J. D., Morel, A., King, D. J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487 (1995)

    Article  CAS  Google Scholar 

  20. Leopold, D. A. & Logothetis, N. K. Microsaccades differentially modulate neural activity in the striate and extrastriate visual cortex. Exp. Brain Res. 123, 341–345 (1998)

    Article  CAS  Google Scholar 

  21. McAdams, C. J. & Maunsell, J. H. R. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999)

    Article  CAS  Google Scholar 

  22. Stanton, G. B., Bruce, C. J. & Goldberg, M. E. Topography of projections to posterior cortical areas from the macaque frontal eye fields. J. Comp. Neurol. 353, 291–305 (1995)

    Article  CAS  Google Scholar 

  23. Yarbus, A. L. Eye Movements and Vision (Plenum, New York, 1967)

    Book  Google Scholar 

  24. Moore, T. Shape representations and visual guidance of saccadic eye movements. Science 285, 1914–1917 (1999)

    Article  CAS  Google Scholar 

  25. Zipser, K., Lamme, V. A. F. & Schiller, P. H. Contextual modulation in primary visual cortex. J. Neurosci. 16, 7376–7389 (1996)

    Article  CAS  Google Scholar 

  26. Nakamura, K., Chung, H. H., Graziano, M. S. & Gross, C. G. Dynamic representation of eye position in the parieto-occipital sulcus. J. Neurophysiol. 81, 2374–2385 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. G. Gross and M. Fallah for their help. This work was supported by grants from the National Institutes of Health, and a HHMI predoctoral fellowship to K.M.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tirin Moore.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, T., Armstrong, K. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003). https://doi.org/10.1038/nature01341

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01341

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing