Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Overview
  • Published:

The complexities of skeletal biology

Abstract

For a long time, the skeleton was seen as an amorphous tissue of little biological interest. But such a view ignored the large number of genetic and degenerative diseases affecting this organ. Over the past 15 years, molecular and genetic studies have modified our understanding of skeletal biology. By so doing this progress has affected our understanding of diseases and suggested in many instances new therapeutic opportunities.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Key issues in skeletal development.
Figure 2: Each of the three specific cell types of the skeleton have particular spatial distributions.
Figure 3: Unresolved issues in skeletal physiology.

References

  1. Christ, B., Jacob, H. J. & Jacob, M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat. Embryol. 150, 171–186 (1977).

    Article  CAS  Google Scholar 

  2. Capdevila, J. & Izpisua Belmonte, J. C. Patterning mechanisms controlling vertebrate limb development. Annu. Rev. Cell Dev. Biol. 17, 87–132 (2001).

    Article  CAS  Google Scholar 

  3. Tickle, C. & Munsterberg, A. Vertebrate limb development—the early stages in chick and mouse. Curr. Opin. Genet. Dev. 11, 476–481 (2001).

    Article  CAS  Google Scholar 

  4. Niswander, L. Pattern formation: old models out on a limb. Nature Rev. Genet. 4, 133–143 (2003).

    Article  CAS  Google Scholar 

  5. Summerbell, D., Lewis, H. H. & Wolpert, L. Positional information in chick limb morphogenesis. Nature 244, 492–496 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Dudley, A. T., Ros, M. A. & Tabin, C. J. A re-examination of proximodistal patterning during vertebrate limb development. Nature 481, 539–544 (2002).

    Article  ADS  Google Scholar 

  7. Karsenty, G. & Wagner, E. F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389–406 (2002).

    Article  CAS  Google Scholar 

  8. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).

    Article  CAS  Google Scholar 

  9. Tondravi, M. M. et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature 386, 81–84 (1997).

    Article  ADS  CAS  Google Scholar 

  10. Grigoriadis, A. E. et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266, 443–448 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Franzoso, G. et al. Requirement for NF-κB in osteoclast and B-cell development. Genes Dev. 11, 3482–3496 (1997).

    Article  CAS  Google Scholar 

  12. Iotsova, V. et al. Osteopetrosis in mice lacking NF-κB1 and NF-κB2. Nature Med. 3, 1285–1289 (1997).

    Article  CAS  Google Scholar 

  13. Takayanagi, H. et al. T-cell mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  Google Scholar 

  15. Bex, M. et al. The effects of growth hormone replacement therapy on bone metabolism in adult-onset growth hormone deficiency: a 2-year open randomized controlled multicenter trial. J. Bone Miner. Res. 17, 1091–1094 (2002).

    Article  Google Scholar 

  16. Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730 (2001).

    CAS  PubMed  Google Scholar 

  17. Kousteni, S. et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 298, 843–846 (2002).

    Article  ADS  CAS  Google Scholar 

  18. Ducy, P. et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207 (2000).

    Article  CAS  Google Scholar 

  19. Takeda, S., Bonnamy, J. P., Owne, M. J., Ducy, P. & Karsenty, G. Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev. 15, 467–481 (2002).

    Article  Google Scholar 

  20. Turner, C. H. & Pavalko, F. M. Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J. Orthop. Sci. 3, 346–355 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Karsenty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karsenty, G. The complexities of skeletal biology. Nature 423, 316–318 (2003). https://doi.org/10.1038/nature01654

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01654

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing