Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels

Abstract

TRPV4 is a widely expressed cation channel of the ‘transient receptor potential’ (TRP) family1 that is related to the vanilloid receptor VR1 (TRPV1). It functions as a Ca2+ entry channel2 and displays remarkable gating promiscuity by responding to both physical stimuli (cell swelling, innoxious heat2,3,4,5,6,7) and the synthetic ligand 4αPDD8. An endogenous ligand for this channel has not yet been identified. Here we show that the endocannabinoid anandamide and its metabolite arachidonic acid activate TRPV4 in an indirect way involving the cytochrome P450 epoxygenase-dependent formation of epoxyeicosatrienoic acids. Application of 5′,6′-epoxyeicosatrienoic acid at submicromolar concentrations activates TRPV4 in a membrane-delimited manner and causes Ca2+ influx through TRPV4-like channels in vascular endothelial cells. Activation of TRPV4 in vascular endothelial cells might therefore contribute to the relaxant effects of endocannabinoids and their P450 epoxygenase-dependent metabolites on vascular tone9,10,11,12.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of AA on [Ca2+]i and currents in TRPV4-expressing HEK-293 cells.
Figure 2: AEA and 2-AG increase [Ca2+]i and activate currents in TRPV4-transfected cells.
Figure 3: Unravelling the activation cascade of TRPV4.
Figure 4: Activation of TRPV4 by EETs.
Figure 5: 5′,6′-EET-induced increase of [Ca2+]i and activation of a TRPV4-like current in native endothelial cells from mouse aorta.

Similar content being viewed by others

References

  1. Clapham, D. E., Runnels, L. W. & Strübing, C. The TRP ion channel family. Nature Rev. Neurosci. 2, 387–396 (2001)

    Article  CAS  Google Scholar 

  2. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G. & Plant, T. D. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biol. 2, 695–702 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. Güler, A. et al. Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408–6414 (2002)

    Article  PubMed Central  PubMed  Google Scholar 

  4. Wissenbach, U., Bödding, M., Freichel, M. & Flockerzi, V. Trp12, a novel Trp related protein from kidney. FEBS Lett. 485, 127–134 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Liedtke, W. et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525–535 (2000)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nilius, B., Prenen, J., Wissenbach, U., Bödding, M. & Droogmans, G. Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and the volume-regulated anion currents in HEK-293 cells. Pflügers Arch. 443, 227–233 (2001)

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe, H. et al. Heat-evoked activation of TRPV4 channels in an HEK293 cell expression system and in native mouse aorta endothelial cells. J. Biol. Chem. 277, 47044–47051 (2002)

    Article  CAS  PubMed  Google Scholar 

  8. Watanabe, H. et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem. 277, 13569–13577 (2002)

    Article  CAS  PubMed  Google Scholar 

  9. Seegers, H. C., Gross, R. W. & Boyle, W. A. Calcium-independent phospholipase A2-derived arachidonic acid is essential for endothelium-dependent relaxation by acetylcholine. J. Pharmacol. Exp. Ther. 302, 918–923 (2002)

    Article  CAS  PubMed  Google Scholar 

  10. Tan, J. Z., Kaley, G. & Gurtner, G. H. Nitric oxide and prostaglandins mediate vasodilation to 5,6-EET in rabbit lung. Adv. Exp. Med. Biol. 407, 561–566 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. Fuloria, M., Smith, T. K. & Aschner, J. L. Role of 5,6-epoxyeicosatrienoic acid in the regulation of newborn piglet pulmonary vascular tone. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L383–L389 (2002)

    Article  CAS  PubMed  Google Scholar 

  12. Jarai, Z. et al. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc. Natl Acad. Sci. USA 96, 14136–14141 (1999)

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  13. Voets, T. et al. Molecular determinants of permeation through the cation channel TRPV4. J. Biol. Chem. 277, 33704–33710 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Ueda, N. Endocannabinoid hydrolases. Prostaglandins Other Lipid Mediat. 68–69, 521–534 (2002)

    Article  PubMed  Google Scholar 

  15. Fleming, I. Cytochrome P450 enzymes in vascular homeostasis. Circ. Res. 89, 753–762 (2001)

    Article  CAS  PubMed  Google Scholar 

  16. Roman, R. J. P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol. Rev. 82, 131–185 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Randall, M. D. & Kendall, D. A. Endocannabinoids: A new class of vasoactive substances. Trends Pharmacol. Sci. 19, 55–58 (1998)

    Article  CAS  PubMed  Google Scholar 

  18. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Randall, M. D. & Kendall, D. A. Anandamide and endothelium-derived hyperpolarizing factor act via a common vasorelaxant mechanism in rat mesentery. Eur. J. Pharmacol. 346, 51–53 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Rzigalinski, B. A., Willoughby, K. A., Hoffman, S. W., Falck, J. R. & Ellis, E. F. Calcium influx factor, further evidence it is 5,6-epoxyeicosatrienoic acid. J. Biol. Chem. 274, 175–182 (1999)

    Article  CAS  PubMed  Google Scholar 

  21. Xie, Q., Zhang, Y., Zhai, C. & Bonanno, J. A. Calcium influx factor from cytochrome P-450 metabolism and secretion-like coupling mechanisms for capacitative calcium entry in corneal endothelial cells. J. Biol. Chem. 277, 16559–16566 (2002)

    Article  CAS  PubMed  Google Scholar 

  22. Graier, W. F., Simecek, S. & Sturek, M. Cytochrome P450 mono-oxygenase-regulated signalling of Ca2+ entry in human and bovine endothelial cells. J. Physiol. (Lond.) 482, 259–274 (1995)

    Article  CAS  Google Scholar 

  23. Wilson, R. I. & Nicoll, R. A. Endocannabinoid signaling in the brain. Science 296, 678–682 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Suh, S. H. et al. Characterisation of explanted endothelial cells from mouse aorta: electrophysiology and Ca2+ signalling. Pflügers Arch. 438, 612–620 (1999)

    CAS  PubMed  Google Scholar 

  25. Freichel, M. et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nature Cell Biol. 3, 121–127 (2001)

    Article  CAS  PubMed  Google Scholar 

  26. Grainger, J. & Boachie Ansah, G. Anandamide-induced relaxation of sheep coronary arteries: The role of the vascular endothelium, arachidonic acid metabolites and potassium channels. Br. J. Pharmacol. 134, 1003–1012 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Williams, D. A. & Fay, F. S. Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium 11, 75–83 (1990)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Flockerzi and C. D. Benham for comments, and V. Flockerzi and U. Wissenbach for providing the mTRP12 clone (mTRPV4). This work was supported by the Belgian Federal Government, the Flemish Government and the Onderzoeksraad KU Leuven (Interuniversity Poles of Attraction Program, IUAP). T.V. is a postdoctoral Fellow of the Fund for Scientific Research–Flanders (Belgium) (FWO–Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nilius.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, H., Vriens, J., Prenen, J. et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424, 434–438 (2003). https://doi.org/10.1038/nature01807

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature01807

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing