Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo

Abstract

Neurotransmission requires a balance of synaptic vesicle exocytosis and endocytosis1. Synaptotagmin I (Syt I) is widely regarded as the primary calcium sensor for synaptic vesicle exocytosis2,3,4,5,6. Previous biochemical data suggest that Syt I may also function during synaptic vesicle endocytosis7,8,9,10,11,12,13,14,15,16; however, ultrastructural analyses at synapses with impaired Syt I function have provided an indirect and conflicting view of the role of Syt I during synaptic vesicle endocytosis3,8,9,10,14. Until now it has not been possible experimentally to separate the exocytic and endocytic functions of Syt I in vivo. Here, we test directly the role of Syt I during endocytosis in vivo. We use quantitative live imaging of a pH-sensitive green fluorescent protein fused to a synaptic vesicle protein (synapto-pHluorin) to measure the kinetics of endocytosis in sytI-null Drosophila. We then combine live imaging of the synapto-pHluorins with photoinactivation of Syt I, through fluorescein-assisted light inactivation, after normal Syt I-mediated vesicle exocytosis. By inactivating Syt I only during endocytosis, we demonstrate that Syt I is necessary for the endocytosis of synaptic vesicles that have undergone exocytosis using a functional Syt I protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endocytosis is impaired at sytI-null synapses.
Figure 2: Photoinactivation of Syt I4C impairs endocytosis after normal vesicle fusion.
Figure 3: n-Syb-pH remains on the synaptic plasma membrane after FlAsH-FALI of Syt I4C.
Figure 4: Photoinactivation of Syt I4C impairs stimulus-dependent FM4-64 loading at the NMJ.

Similar content being viewed by others

References

  1. Jarousse, N. & Kelly, R. B. Endocytotic mechanisms in synapses. Curr. Opin. Cell Biol. 13, 461–469 (2001)

    Article  CAS  Google Scholar 

  2. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell 79, 717–727 (1994)

    Article  CAS  Google Scholar 

  4. Littleton, J. T., Stern, M., Schulze, K., Perin, M. & Bellen, H. J. Mutational analysis of Drosophila synaptotagmin demonstrates its essential role in Ca(2 + )-activated neurotransmitter release. Cell 74, 1125–1134 (1993)

    Article  CAS  Google Scholar 

  5. Perin, M. S., Fried, V. A., Mignery, G. A., Jahn, R. & Sudhof, T. C. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345, 260–263 (1990)

    Article  ADS  CAS  Google Scholar 

  6. Brose, N., Petrenko, A. G., Sudhof, T. C. & Jahn, R. Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021–1025 (1992)

    Article  ADS  CAS  Google Scholar 

  7. Fergestad, T. & Broadie, K. Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. J. Neurosci. 21, 1218–1227 (2001)

    Article  CAS  Google Scholar 

  8. Jorgensen, E. M. et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature 378, 196–199 (1995)

    Article  ADS  CAS  Google Scholar 

  9. Littleton, J. T. et al. Synaptotagmin mutants reveal essential functions for the C2B domain in Ca2+-triggered fusion and recycling of synaptic vesicles in vivo. J. Neurosci. 21, 1421–1433 (2001)

    Article  CAS  Google Scholar 

  10. Reist, N. E. et al. Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila. J. Neurosci. 18, 7662–7673 (1998)

    Article  CAS  Google Scholar 

  11. Jarousse, N. & Kelly, R. B. The AP2 binding site of synaptotagmin 1 is not an internalization signal but a regulator of endocytosis. J. Cell Biol. 154, 857–866 (2001)

    Article  CAS  Google Scholar 

  12. Zhang, J. Z., Davletov, B. A., Sudhof, T. C. & Anderson, R. G. Synaptotagmin I is a high affinity receptor for clathrin AP-2: implications for membrane recycling. Cell 78, 751–760 (1994)

    Article  CAS  Google Scholar 

  13. Haucke, V. & De Camilli, P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs. Science 285, 1268–1271 (1999)

    Article  CAS  Google Scholar 

  14. Fukuda, M. et al. Role of the C2B domain of synaptotagmin in vesicular release and recycling as determined by specific antibody injection into the squid giant synapse preterminal. Proc. Natl Acad. Sci. USA 92, 10708–10712 (1995)

    Article  ADS  CAS  Google Scholar 

  15. Haucke, V., Wenk, M. R., Chapman, E. R., Farsad, K. & De Camilli, P. Dual interaction of synaptotagmin with mu2- and alpha-adaptin facilitates clathrin-coated pit nucleation. EMBO J. 19, 6011–6019 (2000)

    Article  CAS  Google Scholar 

  16. von Poser, C. et al. Synaptotagmin regulation of coated pit assembly. J. Biol. Chem. 275, 30916–30924 (2000)

    Article  CAS  Google Scholar 

  17. Sankaranarayanan, S. & Ryan, T. A. Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system. Nature Cell Biol. 2, 197–204 (2000)

    Article  CAS  Google Scholar 

  18. Sankaranarayanan, S. & Ryan, T. A. Calcium accelerates endocytosis of vSNAREs at hippocampal synapses. Nature Neurosci. 4, 129–136 (2001)

    Article  CAS  Google Scholar 

  19. Gandhi, S. P. & Stevens, C. F. Three modes of synaptic vesicular recycling revealed by single-vesicle imaging. Nature 423, 607–613 (2003)

    Article  ADS  CAS  Google Scholar 

  20. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998)

    Article  ADS  CAS  Google Scholar 

  21. Koenig, J. H. & Ikeda, K. Synaptic vesicles have two distinct recycling pathways. J. Cell Biol. 135, 797–808 (1996)

    Article  CAS  Google Scholar 

  22. Loewen, C. A., Mackler, J. M. & Reist, N. E. Drosophila synaptotagmin I null mutants survive to early adulthood. Genesis 31, 30–36 (2001)

    Article  CAS  Google Scholar 

  23. Yoshihara, M. & Littleton, J. T. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release. Neuron 36, 897–908 (2002)

    Article  CAS  Google Scholar 

  24. Marek, K. W. & Davis, G. W. Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36, 805–813 (2002)

    Article  CAS  Google Scholar 

  25. Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998)

    Article  ADS  CAS  Google Scholar 

  26. Gaietta, G. et al. Multicolor and electron microscopic imaging of connexin trafficking. Science 296, 503–507 (2002)

    Article  ADS  CAS  Google Scholar 

  27. Kuromi, H. & Kidokoro, Y. Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925 (1998)

    Article  CAS  Google Scholar 

  28. Aravanis, A. M., Pyle, J. L. & Tsien, R. W. Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423, 643–647 (2003)

    Article  ADS  CAS  Google Scholar 

  29. Verstreken, P. et al. Endophilin mutations block clathrin-mediated endocytosis but not neurotransmitter release. Cell 109, 101–112 (2002)

    Article  CAS  Google Scholar 

  30. Li, C. et al. Ca(2 + )-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375, 594–599 (1995)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ramaswami and I. Robinson for Drosophila stocks, and D. DeAngelis, J. Rothman and R. Kelly for the superecliptic pHluorin GFP construct. We also thank E. Heckscher for comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme W. Davis.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poskanzer, K., Marek, K., Sweeney, S. et al. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo. Nature 426, 559–563 (2003). https://doi.org/10.1038/nature02184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02184

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing