Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells

Abstract

Antagonistic activities of glucagon and insulin control metabolism in mammals, and disruption of this balance underlies diabetes pathogenesis. Insulin-producing cells (IPCs) in the brain of insects such as Drosophila also regulate serum glucose1,2, but it remains unclear whether insulin is the sole hormonal regulator of glucose homeostasis and whether mechanisms of glucose-sensing and response in IPCs resemble those in pancreatic islets. Here we show, by targeted cell ablation, that Drosophila corpora cardiaca (CC) cells3,4,5 of the ring gland are also essential for larval glucose homeostasis. Unlike IPCs, CC cells express Drosophila cognates of sulphonylurea receptor (Sur) and potassium channel (Ir), proteins that comprise ATP-sensitive potassium channels regulating hormone secretion by islets and other mammalian glucose-sensing cells6,7,8. They also produce adipokinetic hormone, a polypeptide with glucagon-like functions. Glucose regulation by CC cells is impaired by exposure to sulphonylureas, drugs that target the Sur subunit. Furthermore, ubiquitous expression of an akh transgene reverses the effect of CC ablation on serum glucose. Thus, Drosophila CC cells are crucial regulators of glucose homeostasis and they use glucose-sensing and response mechanisms similar to islet cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haemolymph glucose regulation by KATP channel-expressing cells in the corpora cardiaca.
Figure 2: akh gene expression and morphology of akh-expressing cells.
Figure 3: Changes in fluorescence intensity in akh-expressing cells producing camgaroo-2 (cg-2).

Similar content being viewed by others

References

  1. Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr. Biol. 12, 1293–1300 (2002)

    Article  CAS  PubMed  Google Scholar 

  3. Veelaert, D., Schoofs, L. & De Loof, A. Peptidergic control of the corpus cardiacum-corpora allata complex of locusts. Int. Rev. Cytol. 182, 249–302 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. Van der Horst, D. J. Insect adipokinetic hormones: release and integration of flight energy metabolism. Comp. Biochem. Phys. B 136, 217–226 (2003)

    Article  Google Scholar 

  5. Noyes, B. E., Katz, F. N. & Schaffer, M. H. Identification and expression of the Drosophila adipokinetic hormone gene. Mol. Cell. Endocrinol. 109, 133–141 (1995)

    Article  CAS  PubMed  Google Scholar 

  6. Aguilar-Bryan, L. et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268, 423–426 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Miki, T. et al. ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nature Neurosci. 4, 507–512 (2001)

    Article  CAS  PubMed  Google Scholar 

  8. Seino, S. & Miki, T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol. 81, 133–176 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Staubli, F. et al. Molecular identification of the insect adipokinetic hormone receptors. Proc. Natl Acad. Sci. USA 99, 3446–3451 (2002)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. McNabb, S. L. et al. Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila. Neuron 19, 813–823 (1997)

    Article  CAS  PubMed  Google Scholar 

  11. Lee, G. & Park, J. H. Hemolymph sugar homeostasis and starvation-induced hyperactivity affected by genetic manipulations of the adipokinetichormone-encoding gene in Drosophila melanogaster. Genetics 167, 311–323 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gelling, R. W. et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc. Natl Acad. Sci. USA 100, 1438–1443 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brogiolo, W. et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Nasonkin, I. et al. A novel sulfonylurea receptor family member expressed in the embryonic Drosophila dorsal vessel and tracheal system. J. Biol. Chem. 274, 29420–29425 (1999)

    Article  CAS  PubMed  Google Scholar 

  15. Döring, F., Wischmeyer, E., Kuhnlein, R. P., Jäckle, H. & Karschin, A. Inwardly rectifying K+ (Kir) channels in Drosophila. A crucial role of cellular milieu factors Kir channel function. J. Biol. Chem. 277, 25554–25561 (2002)

    Article  PubMed  Google Scholar 

  16. Sturgess, N. C., Ashford, M. L., Cook, D. L. & Hales, C. N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet ii, 474–475 (1985)

    Article  Google Scholar 

  17. Trube, G., Rorsman, P. & Ohno-Shosaku, T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflügers Arch. 407, 493–499 (1986)

    Article  CAS  PubMed  Google Scholar 

  18. Ostergard, T. et al. The insulin secretagogues glibenclamide and repaglinide do not influence growth hormone secretion in humans but stimulate glucagon secretion during profound insulin deficiency. J. Clin. Endocrinol. Metab. 89, 297–302 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. Paradis, S., Sweeney, S. T. & Davis, G. W. Homeostatic control of presynaptic release is triggered by postsynaptic membrane depolarization. Neuron 30, 737–747 (2001)

    Article  CAS  PubMed  Google Scholar 

  20. Göpel, S. O. et al. Regulation of glucagon release in mouse-cells by KATP channels and inactivation of TTX-sensitive Na+ channels. J. Physiol. (Lond.) 528, 509–520 (2000)

    Article  Google Scholar 

  21. Høy, M. et al. Tolbutamide stimulates exocytosis of glucagon by inhibition of a mitochondrial-like ATP-sensitive K+ (KATP) conductance in rat pancreatic α-cells. J. Physiol. (Lond.) 527, 109–120 (2000)

    Article  Google Scholar 

  22. Bokvist, K. et al. Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic α-cells. Pflügers Arch. 438, 428–436 (1999)

    CAS  PubMed  Google Scholar 

  23. Yu, D., Baird, G. S., Tsien, R. Y. & Davis, R. L. Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J. Neurosci. 23, 64–72 (2003)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pannabecker, T. & Orchard, I. Regulation of adipokinetic hormone release from locust neuroendocrine tissue: participation of calcium and cyclic AMP. Brain Res. 423, 13–22 (1987)

    Article  CAS  PubMed  Google Scholar 

  25. Pannabecker, T. & Orchard, I. Ionic dependence of depolarization-mediated adipokinetic hormone release from the locust corpus cardiacum. Brain Res. 477, 38–47 (1989)

    Article  CAS  PubMed  Google Scholar 

  26. Passier, P., Vullings, H. G. B., Diederen, J. H. B. & Van der Horst, D. J. Trehalose inhibits the release of adipokinetic hormones from the corpus cardiacum in the African migratory locust, Locusta migratoria, at the level of the adipokinetic cells. J. Endocrinol. 153, 299–305 (1997)

    Article  CAS  PubMed  Google Scholar 

  27. Tomancak, P. et al. Berkeley Drosophila Genome Project (http://www.fruitfly.org/cgi-bin/ex/insitu.pl).

  28. Orchard, I. & Loughton, B. G. Is octopamine a transmitter mediating hormone release in insects? J. Neurobiol. 12, 143–153 (1981)

    Article  CAS  PubMed  Google Scholar 

  29. Copenhaver, P. F. & Taghert, P. H. Origins of the insect enteric nervous system: differentiation of the enteric ganglia from a neurogenic epithelium. Development 113, 111–132 (1991)

    Google Scholar 

  30. DeVelasco, B., Shen, J., Go, S. & Hartenstein, V. Embryonic development of the Drosophila corpus cardiacum, a neuroendocrine gland with similarity to the vertebrate pituitary, is controlled by sine oculis and glass. Dev. Biol. (in the press)

Download references

Acknowledgements

We thank B. Tsai for Ir and Sur cloning and in situ hybridizations, X. Gu for akh cloning and constructions, G. McLean for fly husbandry, E. Bustamante for glucose assays, M. Fish for P-element-mediated transformations, P. Calvert for quantitative analysis of calcium transients, and R. Nusse, G. Barsh, M. Krasnow, S. DiNardo and members of the Rulifson and Kim laboratories for suggestions on the manuscript. E.R. was supported by a grant from the Juvenile Diabetes Research Foundation (JDRF). S.K. was supported by grants from the JDRF, the Pew Charitable Trusts and the Verto Institute. E.R. and S.K. contributed equally to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung K. Kim.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Rulifson, E. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 431, 316–320 (2004). https://doi.org/10.1038/nature02897

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02897

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing