Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activity-dependent dynamics and sequestration of proteasomes in dendritic spines

Abstract

The regulated degradation of proteins by the ubiquitin proteasome pathway is emerging as an important modulator of synaptic function and plasticity1,2,3,4,5,6,7,8,9,10,11,12,13,14,15. The proteasome is a large, multi-subunit cellular machine that recognizes, unfolds and degrades target polyubiquitinated proteins. Here we report NMDA (N-methyl-d-aspartate) receptor-dependent redistribution of proteasomes from dendritic shafts to synaptic spines upon synaptic stimulation, providing a mechanism for local protein degradation. Using a proteasome-activity reporter and local perfusion, we show that synaptic stimulation regulates proteasome activity locally in the dendrites. We used restricted photobleaching of individual spines and dendritic shafts to reveal the dynamics that underlie proteasome sequestration, and show that activity modestly enhances the entry rate of proteasomes into spines while dramatically reducing their exit rate. Proteasome sequestration is persistent, reflecting an association with the actin-based cytoskeleton. Together, our data indicate that synaptic activity can promote the recruitment and sequestration of proteasomes to locally remodel the protein composition of synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A GFP-labelled proteasome subunit, Rpt1-GFP, moves into spines upon depolarization.
Figure 2: Endogenous proteasomes move into spines.
Figure 3: KCl stimulation increases proteasome activity.
Figure 4: Photobleaching of Rpt1–GFP indicates the tight association of proteasomes with spines.
Figure 5: The proteasome associates with the actin cytoskeleton.

Similar content being viewed by others

References

  1. Hegde, A. N. et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell 89, 115–126 (1997)

    Article  CAS  Google Scholar 

  2. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001)

    Article  CAS  Google Scholar 

  3. Burbea, M., Dreier, L., Dittman, J. S., Grunwald, M. E. & Kaplan, J. M. Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35, 107–120 (2002)

    Article  CAS  Google Scholar 

  4. Ehlers, M. D. Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neurosci. 6, 231–242 (2003)

    Article  CAS  Google Scholar 

  5. Zhao, Y., Hegde, A. N. & Martin, K. C. The ubiquitin proteasome system functions as an inhibitory constraint on synaptic strengthening. Curr. Biol. 13, 887–898 (2003)

    Article  CAS  Google Scholar 

  6. Pak, D. T. & Sheng, M. Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science 302, 1368–1373 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Patrick, G. N., Bingol, B., Weld, H. A. & Schuman, E. M. Ubiquitin-mediated proteasome activity is required for agonist-induced endocytosis of GluRs. Curr. Biol. 13, 2073–2081 (2003)

    Article  CAS  Google Scholar 

  8. Colledge, M. et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40, 595–607 (2003)

    Article  CAS  Google Scholar 

  9. Bingol, B. & Schuman, E. M. A proteasome-sensitive connection between PSD-95 and GluR1 endocytosis. Neuropharmacology 47, 755–763 (2004)

    Article  CAS  Google Scholar 

  10. van Roessel, P., Elliott, D. A., Robinson, I. M., Prokop, A. & Brand, A. H. Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707–718 (2004)

    Article  CAS  Google Scholar 

  11. Juo, P. & Kaplan, J. M. The anaphase-promoting complex regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Curr. Biol. 14, 2057–2062 (2004)

    Article  CAS  Google Scholar 

  12. Dreier, L., Burbea, M. & Kaplan, J. M. LIN-23-mediated degradation of β-catenin regulates the abundance of GLR-1 glutamate receptors in the ventral nerve cord of C. elegans. Neuron 46, 51–64 (2005)

    Article  CAS  Google Scholar 

  13. Steward, O. & Schuman, E. M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003)

    Article  CAS  Google Scholar 

  14. Bingol, B. & Schuman, E. M. Synaptic protein degradation by the ubiquitin proteasome system. Curr. Opin. Neurobiol. 15, 536–541 (2005)

    Article  CAS  Google Scholar 

  15. Yi, J. J. & Ehlers, M. D. Ubiquitin and protein turnover in synapse function. Neuron 47, 629–632 (2005)

    Article  CAS  Google Scholar 

  16. Enenkel, C., Lehmann, A. & Kloetzel, P. M. GFP-labelling of 26S proteasomes in living yeast: insight into proteasomal functions at the nuclear envelope/rough ER. Mol. Biol. Rep. 26, 131–135 (1999)

    Article  CAS  Google Scholar 

  17. Isaac, J. T. Postsynaptic silent synapses: evidence and mechanisms. Neuropharmacology 45, 450–460 (2003)

    Article  CAS  Google Scholar 

  18. Fujimuro, M., Sawada, H. & Yokosawa, H. Production and characterization of monoclonal antibodies specific to multi-ubiquitin chains of polyubiquitinated proteins. FEBS Lett. 349, 173–180 (1994)

    Article  CAS  Google Scholar 

  19. Lindsten, K., Menendez-Benito, V., Masucci, M. G. & Dantuma, N. P. A transgenic mouse model of the ubiquitin/proteasome system. Nature Biotechnol. 21, 897–902 (2003)

    Article  CAS  Google Scholar 

  20. Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M. G. Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnol. 18, 538–543 (2000)

    Article  CAS  Google Scholar 

  21. Allison, D. W., Gelfand, V. I., Spector, I. & Craig, A. M. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18, 2423–2436 (1998)

    Article  CAS  Google Scholar 

  22. Kurz-Isler, G. Induction of paracrystalline arrays by vincristine in the synaptic formations of the teleost retina. Cell Tissue Res. 191, 75–82 (1978)

    Article  Google Scholar 

  23. Setou, M. et al. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83–87 (2002)

    Article  ADS  CAS  Google Scholar 

  24. Fang, S. & Weissman, A. M. A field guide to ubiquitylation. Cell. Mol. Life Sci. 61, 1546–1561 (2004)

    Article  CAS  Google Scholar 

  25. Miller, J. & Gordon, C. The regulation of proteasome degradation by multi-ubiquitin chain binding proteins. FEBS Lett. 579, 3224–3230 (2005)

    Article  CAS  Google Scholar 

  26. Glickman, M. H. & Raveh, D. Proteasome plasticity. FEBS Lett. 579, 3214–3223 (2005)

    Article  CAS  Google Scholar 

  27. Gordon, C. The intracellular localization of the proteasome. Curr. Top. Microbiol. Immunol. 268, 175–184 (2002)

    CAS  PubMed  Google Scholar 

  28. Ferrell, K., Wilkinson, C. R., Dubiel, W. & Gordon, C. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 25, 83–88 (2000)

    Article  CAS  Google Scholar 

  29. Ostroff, L. E., Fiala, J. C., Allwardt, B. & Harris, K. M. Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron 35, 535–545 (2002)

    Article  CAS  Google Scholar 

  30. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature Biotechnol. 20, 87–90 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Kloetzel, Masucci and Kennedy laboratories for providing the Rpt1(CIM5)–GFP, UbG76V–GFP and mRFP clones, respectively. We also thank members of the Schuman laboratory, especially C.-Y. Tai and S. Kim, and former member G. Patrick for discussions. E.M.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin M. Schuman.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Notes

This file contains Supplementary Figures 1–6 and Supplementary Legends 1–6, Supplementary Methods, Supplementary Notes (additional references pertaining to supplementary methods) and Supplementary Table 1. (PDF 7302 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bingol, B., Schuman, E. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441, 1144–1148 (2006). https://doi.org/10.1038/nature04769

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04769

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing