Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation

Abstract

Ca2+-release-activated Ca2+ (CRAC) channels generate sustained Ca2+ signals that are essential for a range of cell functions, including antigen-stimulated T lymphocyte activation and proliferation1,2. Recent studies3 have revealed that the depletion of Ca2+ from the endoplasmic reticulum (ER) triggers the oligomerization of stromal interaction molecule 1 (STIM1), the ER Ca2+ sensor, and its redistribution to ER–plasma membrane (ER–PM) junctions4,5,6,7,8 where the CRAC channel subunit ORAI1 accumulates in the plasma membrane and CRAC channels open9,10,11,12. However, how the loss of ER Ca2+ sets into motion these coordinated molecular rearrangements remains unclear. Here we define the relationships among [Ca2+]ER, STIM1 redistribution and CRAC channel activation and identify STIM1 oligomerization as the critical [Ca2+]ER-dependent event that drives store-operated Ca2+ entry. In human Jurkat leukaemic T cells expressing an ER-targeted Ca2+ indicator, CRAC channel activation and STIM1 redistribution follow the same function of [Ca2+]ER, reaching half-maximum at 200 µM with a Hill coefficient of 4. Because STIM1 binds only a single Ca2+ ion5, the high apparent cooperativity suggests that STIM1 must first oligomerize to enable its accumulation at ER–PM junctions. To assess directly the causal role of STIM1 oligomerization in store-operated Ca2+ entry, we replaced the luminal Ca2+-sensing domain of STIM1 with the 12-kDa FK506- and rapamycin-binding protein (FKBP12, also known as FKBP1A) or the FKBP-rapamycin binding (FRB) domain of the mammalian target of rapamycin (mTOR, also known as FRAP1). A rapamycin analogue oligomerizes the fusion proteins and causes them to accumulate at ER–PM junctions and activate CRAC channels without depleting Ca2+ from the ER. Thus, STIM1 oligomerization is the critical transduction event through which Ca2+ store depletion controls store-operated Ca2+ entry, acting as a switch that triggers the self-organization and activation of STIM1–ORAI1 clusters at ER–PM junctions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dependence of CRAC channel activation on [Ca2+]ER.
Figure 2: The [Ca2+]ER dependence of STIM1 redistribution determines the [Ca2+]ER-response relation of the CRAC channel.
Figure 3: STIM1 oligomerization induces the accumulation of STIM1 at ER–PM junctions.
Figure 4: STIM1 oligomerization activates Ca2+ entry through CRAC channels.

Similar content being viewed by others

References

  1. Parekh, A. B. & Putney, J. W. Store-operated calcium channels. Physiol. Rev. 85, 757–810 (2005)

    Article  CAS  Google Scholar 

  2. Feske, S. Calcium signalling in lymphocyte activation and disease. Nature Rev. Immunol. 7, 690–702 (2007)

    Article  CAS  Google Scholar 

  3. Wu, M. M., Luik, R. M. & Lewis, R. S. Some assembly required: constructing the elementary units of store-operated Ca2+ entry. Cell Calcium 42, 163–172 (2007)

    Article  CAS  Google Scholar 

  4. Liou, J., Fivaz, M., Inoue, T. & Meyer, T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc. Natl Acad. Sci. USA 104, 9301–9306 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Stathopulos, P. B., Li, G. Y., Plevin, M. J., Ames, J. B. & Ikura, M. Stored Ca2+ depletion-induced oligomerization of STIM1 via the EF–SAM region: an initiation mechanism for capacitive Ca2+ entry. J. Biol. Chem. 281, 35855–35862 (2006)

    Article  CAS  Google Scholar 

  6. Zhang, S. L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005)

    Article  ADS  CAS  Google Scholar 

  7. Liou, J. et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15, 1235–1241 (2005)

    Article  CAS  Google Scholar 

  8. Wu, M. M., Buchanan, J., Luik, R. M. & Lewis, R. S. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006)

    Article  CAS  Google Scholar 

  9. Prakriya, M. et al. Orai1 is an essential pore subunit of the CRAC channel. Nature 443, 230–233 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Vig, M. et al. CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr. Biol. 16, 2073–2079 (2006)

    Article  CAS  Google Scholar 

  11. Luik, R. M., Wu, M. M., Buchanan, J. & Lewis, R. S. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions. J. Cell Biol. 174, 815–825 (2006)

    Article  CAS  Google Scholar 

  12. Xu, P. et al. Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. Biochem. Biophys. Res. Commun. 350, 969–976 (2006)

    Article  CAS  Google Scholar 

  13. Prakriya, M. & Lewis, R. S. CRAC channels: activation, permeation, and the search for a molecular identity. Cell Calcium 33, 311–321 (2003)

    Article  CAS  Google Scholar 

  14. Brandman, O., Liou, J., Park, W. S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell 131, 1327–1339 (2007)

    Article  CAS  Google Scholar 

  15. Oh-Hora, M. et al. Dual functions for the endoplasmic reticulum calcium sensors STIM1 and STIM2 in T cell activation and tolerance. Nature Immunol. 9, 432–443 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl Acad. Sci. USA 103, 16704–16709 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Williams, R. T. et al. Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. Biochim. Biophys. Acta 1596, 131–137 (2002)

    Article  CAS  Google Scholar 

  18. Bayle, J. H. et al. Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem. Biol. 13, 99–107 (2006)

    Article  CAS  Google Scholar 

  19. Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175, 377–382 (2006)

    Article  CAS  Google Scholar 

  20. Schägger, H. & von Jagow, G. Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223–231 (1991)

    Article  Google Scholar 

  21. Muik, M. et al. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 283, 8014–8022 (2008)

    Article  CAS  Google Scholar 

  22. Yeromin, A. V. et al. Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Varnai, P., Toth, B., Toth, D. J., Hunyady, L. & Balla, T. Visualization and manipulation of plasma membrane–endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1–Orai1 complex. J. Biol. Chem. 282, 29678–29690 (2007)

    Article  CAS  Google Scholar 

  24. Huang, G. N. et al. STIM1 carboxyl-terminus activates native SOC, I crac and TRPC1 channels. Nature Cell Biol. 8, 1003–1010 (2006)

    Article  CAS  Google Scholar 

  25. Li, Z. et al. Mapping the interacting domains of STIM1 and Orai1 in Ca2+ release-activated Ca2+ channel activation. J. Biol. Chem. 282, 29448–29456 (2007)

    Article  CAS  Google Scholar 

  26. Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R. Y. Dynamic and quantitative Ca2+ measurements using improved cameleons. Proc. Natl Acad. Sci. USA 96, 2135–2140 (1999)

    Article  ADS  CAS  Google Scholar 

  27. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997)

    Article  ADS  CAS  Google Scholar 

  28. Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A. & Tsien, R. Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J. Biol. Chem. 276, 29188–29194 (2001)

    Article  CAS  Google Scholar 

  29. Bautista, D. M., Hoth, M. & Lewis, R. S. Enhancement of calcium signalling dynamics and stability by delayed modulation of the plasma-membrane calcium–ATPase in human T cells. J. Physiol. (Lond.) 541, 877–894 (2002)

    Article  CAS  Google Scholar 

  30. Zweifach, A. & Lewis, R. S. Slow calcium-dependent inactivation of depletion-activated calcium current. Store-dependent and -independent mechanisms. J. Biol. Chem. 270, 14445–14451 (1995)

    Article  CAS  Google Scholar 

  31. Prakriya, M. & Lewis, R. S. Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J. Physiol. (Lond.) 536, 3–19 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank N. Bhakta and D. Bautista for assistance and advice during the initial phase of these studies, R. Tsien for the gift of cameleon YC4er, P. Bacchawat for advice on BN–PAGE, and R. Dolmetsch for comments on the manuscript. This work was supported by a grant from the National Institutes of Health (NIH) and the Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Lewis.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Table 1, and Supplementary Figures 1-4 and Legends. (PDF 2704 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luik, R., Wang, B., Prakriya, M. et al. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454, 538–542 (2008). https://doi.org/10.1038/nature07065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07065

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing