Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The development of allergic inflammation

Abstract

Allergic disorders, such as anaphylaxis, hay fever, eczema and asthma, now afflict roughly 25% of people in the developed world. In allergic subjects, persistent or repetitive exposure to allergens, which typically are intrinsically innocuous substances common in the environment, results in chronic allergic inflammation. This in turn produces long-term changes in the structure of the affected organs and substantial abnormalities in their function. It is therefore important to understand the characteristics and consequences of acute and chronic allergic inflammation, and in particular to explore how mast cells can contribute to several features of this maladaptive pattern of immunological reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sensitization to allergens in the airway.
Figure 2: Highly simplified scheme of FcɛRI signalling events in mast cells.
Figure 3: Early phase of allergen-induced airway inflammation.
Figure 4: Late phase of allergen-induced airway inflammation.
Figure 5: Chronic stage of allergen-induced airway inflammation.
Figure 6: Chronic allergic inflammation and tissue remodelling in asthma.

Similar content being viewed by others

References

  1. von Pirquet, C. Allergie. Münch. Med. Wochenschr. 53, 1457–1458 (1906).

    Google Scholar 

  2. Silverstein, A. M. Clemens Freiherr von Pirquet: explaining immune complex disease in 1906. Nature Immunol. 1, 453–455 (2000).

    CAS  Google Scholar 

  3. Holgate, S. T. The epidemic of allergy and asthma. Nature 402, B2–B4 (1999).

    ADS  CAS  PubMed  Google Scholar 

  4. Kay, A. B. Allergy and allergic diseases. First of two parts. N. Engl. J. Med. 344, 30–37 (2001).

    CAS  PubMed  Google Scholar 

  5. Eder, W., Ege, M. J. & von Mutius, E. The asthma epidemic. N. Engl. J. Med. 355, 2226–2235 (2006).

    CAS  PubMed  Google Scholar 

  6. Sampson, H. A. et al. Symposium on the definition and management of anaphylaxis: summary report. J. Allergy Clin. Immunol. 115, 584–591 (2005).

    PubMed  Google Scholar 

  7. Barnes, P. J. New therapies for asthma. Trends Mol. Med. 12, 515–520 (2006).

    CAS  PubMed  Google Scholar 

  8. Kraft, S. & Kinet, J. P. New developments in FcɛRI regulation, function and inhibition. Nature Rev. Immunol. 7, 365–378 (2007). This review of FcɛRI-dependent signalling in mast cells and basophils considers how the biology and functional properties of FcɛRI might be exploited for the development of new therapeutics.

    CAS  Google Scholar 

  9. Holgate, S. T. & Polosa, R. Treatment strategies for allergy and asthma. Nature Rev. Immunol. 8, 218–230 (2008).

    CAS  Google Scholar 

  10. Larché, M., Akdis, C. A. & Valenta, R. Immunological mechanisms of allergen-specific immunotherapy. Nature Rev. Immunol. 6, 761–771 (2006). This review discusses the history, immunological mechanisms and future prospects of improving allergen-specific immunotherapy.

    Google Scholar 

  11. Akdis, M. & Akdis, C. A. Mechanisms of allergen-specific immunotherapy. J. Allergy Clin. Immunol. 119, 780–791 (2007).

    CAS  PubMed  Google Scholar 

  12. Kukkonen, K. et al. Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 119, 192–198 (2007).

    CAS  PubMed  Google Scholar 

  13. Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494 (2002).

    ADS  CAS  PubMed  Google Scholar 

  14. Galli, S. J. & Askenase, P. W. in The Reticuloendothelial System: A Comprehensive Treatise Vol. IX: Hypersensitivity (eds Abramoff, P., Phillips, S. M. & Escobar, M. R.) 321–369 (Plenum, 1986).

    Google Scholar 

  15. Fallon, P. G. & Mangan, N. E. Suppression of TH2-type allergic reactions by helminth infection. Nature Rev. Immunol. 7, 220–230 (2007).

    CAS  Google Scholar 

  16. Hawrylowicz, C. M. & O'Garra, A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nature Rev. Immunol. 5, 271–283 (2005). This review provides an introduction to the mechanisms by which regulatory T cells that produce the anti-inflammatory and immunosuppressive cytokine IL-10 might limit the pathology associated with allergy and allergic inflammation of the airways in asthma.

    CAS  Google Scholar 

  17. Romagnani, S. Coming back to a missing immune deviation as the main explanatory mechanism for the hygiene hypothesis. J. Allergy Clin. Immunol. 119, 1511–1513 (2007).

    PubMed  Google Scholar 

  18. Cookson, W. The immunogenetics of asthma and eczema: a new focus on the epithelium. Nature Rev. Immunol. 4, 978–988 (2004).

    CAS  Google Scholar 

  19. Vercelli, D. Discovering susceptibility genes for asthma and allergy. Nature Rev. Immunol. 8, 169–182 (2008). This review presents the current understanding of the many genes that have been implicated in asthma and allergy, including evidence that exposure to the same microbial products may have opposite effects on susceptibility to developing allergic disorders, depending on an individual's genotype.

    CAS  Google Scholar 

  20. Geha, R. S., Jabara, H. H. & Brodeur, S. R. The regulation of immunoglobulin E class-switch recombination. Nature Rev. Immunol. 3, 721–732 (2003).

    CAS  Google Scholar 

  21. Gould, H. J. & Sutton, B. J. IgE in allergy and asthma today. Nature Rev. Immunol. 8, 205–217 (2008). This review describes the complex role of IgE and its receptors in allergy and asthma, including evidence that IgE and its receptors may contribute to epitope spreading in, and therefore exacerbation of, allergic disorders.

    CAS  Google Scholar 

  22. Herrick, C. A. & Bottomly, K. To respond or not to respond: T cells in allergic asthma. Nature Rev. Immunol. 3, 405–412 (2003).

    CAS  Google Scholar 

  23. Dickey, B. F. Exoskeletons and exhalation. N. Engl. J. Med. 357, 2082–2084 (2007).

    CAS  PubMed  Google Scholar 

  24. Saxon, A. & Diaz-Sanchez, D. Air pollution and allergy: you are what you breathe. Nature Immunol. 6, 223–226 (2005).

    CAS  Google Scholar 

  25. Hammad, H. & Lambrecht, B. N. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nature Rev. Immunol. 8, 193–204 (2008).

    CAS  Google Scholar 

  26. Platts-Mills, T. A., Woodfolk, J. A., Erwin, E. A. & Aalberse, R. Mechanisms of tolerance to inhalant allergens: the relevance of a modified TH2 response to allergens from domestic animals. Springer Semin. Immunopathol. 25, 271–279 (2004).

    PubMed  Google Scholar 

  27. Sandilands, A., Smith, F. J., Irvine, A. D. & McLean, W. H. Filaggrin's fuller figure: a glimpse into the genetic architecture of atopic dermatitis. J. Invest. Dermatol. 127, 1282–1284 (2007).

    CAS  PubMed  Google Scholar 

  28. Schleimer, R. P., Kato, A., Kern, R., Kuperman, D. & Avila, P. C. Epithelium: at the interface of innate and adaptive immune responses. J. Allergy Clin. Immunol. 120, 1279–1284 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ying, S., Meng, Q., Corrigan, C. J. & Lee, T. H. Lack of filaggrin expression in the human bronchial mucosa. J. Allergy Clin. Immunol. 118, 1386–1388 (2006).

    CAS  PubMed  Google Scholar 

  30. Jeong, S. K. et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J. Invest. Dermatol. 128, 1930–1939 (2008).

    CAS  PubMed  Google Scholar 

  31. McKerrow, J. H., Caffrey, C., Kelly, B., Loke, P. & Sajid, M. Proteases in parasitic diseases. Annu. Rev. Pathol. 1, 497–536 (2006).

    CAS  PubMed  Google Scholar 

  32. Min, B. & Paul, W. E. Basophils: in the spotlight at last. Nature Immunol. 9, 223–225 (2008).

    CAS  Google Scholar 

  33. Sokol, C. L., Barton, G. M., Farr, A. G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunol. 9, 310–318 (2008). This paper identifies a key role for basophils in the initiation of T H 2-cell responses to exogenous proteases.

    CAS  Google Scholar 

  34. Marshall, J. S. Mast-cell responses to pathogens. Nature Rev. Immunol. 4, 787–799 (2004).

    CAS  Google Scholar 

  35. Galli, S. J. et al. Mast cells as 'tunable' effector and immunoregulatory cells: recent advances. Annu. Rev. Immunol. 23, 749–786 (2005). This review discusses many aspects of mast-cell biology, including mast-cell phenotypic heterogeneity and function, and the roles of mast cells as effector and potential immunoregulatory cells in innate and adaptive immune responses.

    CAS  PubMed  Google Scholar 

  36. Gilfillan, A. M. & Tkaczyk, C. Integrated signalling pathways for mast-cell activation. Nature Rev. Immunol. 6, 218–230 (2006).

    CAS  Google Scholar 

  37. Rivera, J. & Gilfillan, A. M. Molecular regulation of mast cell activation. J. Allergy Clin. Immunol. 117, 1214–1225 (2006).

    CAS  PubMed  Google Scholar 

  38. Dvorak, A. M. Ultrastructural studies of human basophils and mast cells. J. Histochem. Cytochem. 53, 1043–1070 (2005).

    CAS  PubMed  Google Scholar 

  39. Caughey, G. H. Mast cell tryptases and chymases in inflammation and host defense. Immunol. Rev. 217, 141–154 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pejler, G., Abrink, M., Ringvall, M. & Wernersson, S. Mast cell proteases. Adv. Immunol. 95, 167–255 (2007).

    CAS  PubMed  Google Scholar 

  41. Stevens, R. L. & Adachi, R. Protease-proteoglycan complexes of mouse and human mast cells and importance of their beta-tryptase-heparin complexes in inflammation and innate immunity. Immunol. Rev. 217, 155–167 (2007).

    CAS  PubMed  Google Scholar 

  42. Bradding, P. & Holgate, S. T. The mast cell as a source of cytokines in asthma. Ann. NY Acad. Sci. 796, 272–281 (1996).

    ADS  CAS  PubMed  Google Scholar 

  43. Saito, H., Nakajima, T. & Matsumoto, K. Human mast cell transcriptome project. Int. Arch. Allergy Immunol. 125, 1–8 (2001).

    CAS  PubMed  Google Scholar 

  44. Boyce, J. A. Mast cells and eicosanoid mediators: a system of reciprocal paracrine and autocrine regulation. Immunol. Rev. 217, 168–185 (2007).

    CAS  PubMed  Google Scholar 

  45. Finkelman, F. D. Anaphylaxis: lessons from mouse models. J. Allergy Clin. Immunol. 120, 506–515 (2007).

    CAS  PubMed  Google Scholar 

  46. Wills-Karp, M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17, 255–281 (1999).

    CAS  PubMed  Google Scholar 

  47. Sarin, S., Undem, B., Sanico, A. & Togias, A. The role of the nervous system in rhinitis. J. Allergy Clin. Immunol. 118, 999–1016 (2006).

    PubMed  Google Scholar 

  48. Cevikbas, F., Steinhoff, A., Homey, B. & Steinhoff, M. Neuroimmune interactions in allergic skin diseases. Curr. Opin. Allergy Clin. Immunol. 7, 365–373 (2007).

    CAS  PubMed  Google Scholar 

  49. Lalloo, U. G., Barnes, P. J. & Chung, K. F. Pathophysiology and clinical presentations of cough. J. Allergy Clin. Immunol. 98, S91–S96; discussion S96–S97 (1996).

    CAS  PubMed  Google Scholar 

  50. MacGlashan, D. Jr, Gauvreau, G. & Schroeder, J. T. Basophils in airway disease. Curr. Allergy Asthma Rep. 2, 126–132 (2002).

    PubMed  Google Scholar 

  51. Marone, G., Triggiani, M. & de Paulis, A. Mast cells and basophils: friends as well as foes in bronchial asthma? Trends Immunol. 26, 25–31 (2005).

    CAS  PubMed  Google Scholar 

  52. Galli, S. J., Grimbaldeston, M. A. & Tsai, M. Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nature Rev. Immunol. 8, 478–486 (2008).

    CAS  Google Scholar 

  53. Sayed, B. A., Christy, A., Quirion, M. R. & Brown, M. A. The master switch: the role of mast cells in autoimmunity and tolerance. Annu. Rev. Immunol. 26, 705–739 (2008).

    CAS  PubMed  Google Scholar 

  54. Bradding, P., Walls, A. F. & Holgate, S. T. The role of the mast cell in the pathophysiology of asthma. J. Allergy Clin. Immunol. 117, 1277–1284 (2006).

    CAS  PubMed  Google Scholar 

  55. Brown, J. M., Wilson, T. M. & Metcalfe, D. D. The mast cell and allergic diseases: role in pathogenesis and implications for therapy. Clin. Exp. Allergy 38, 4–18 (2008).

    CAS  PubMed  Google Scholar 

  56. Larché, M., Robinson, D. S. & Kay, A. B. The role of T lymphocytes in the pathogenesis of asthma. J. Allergy Clin. Immunol. 111, 450–463 (2003).

    PubMed  Google Scholar 

  57. Kay, A. B. et al. Airway expression of calcitonin gene-related peptide in T-cell peptide-induced late asthmatic reactions in atopics. Allergy 62, 495–503 (2007).

    CAS  PubMed  Google Scholar 

  58. Bonness, S. & Bieber, T. Molecular basis of atopic dermatitis. Curr. Opin. Allergy Clin. Immunol. 7, 382–386 (2007).

    CAS  PubMed  Google Scholar 

  59. Doherty, T. & Broide, D. Cytokines and growth factors in airway remodeling in asthma. Curr. Opin. Immunol. 19, 676–680 (2007).

    CAS  PubMed  Google Scholar 

  60. Holgate, S. T. Epithelium dysfunction in asthma. J. Allergy Clin. Immunol. 120, 1233–1244 (2007). This review discusses the role of the airway epithelium and its function (and dysfunction) in the development and pathology of asthma.

    CAS  PubMed  Google Scholar 

  61. Mauad, T., Bel, E. H. & Sterk, P. J. Asthma therapy and airway remodeling. J. Allergy Clin. Immunol. 120, 997–1009 (2007).

    PubMed  Google Scholar 

  62. Ollerenshaw, S. L., Jarvis, D., Sullivan, C. E. & Woolcock, A. J. Substance P immunoreactive nerves in airways from asthmatics and nonasthmatics. Eur. Respir. J. 4, 673–682 (1991).

    CAS  PubMed  Google Scholar 

  63. Chanez, P. et al. Bronchial mucosal immunoreactivity of sensory neuropeptides in severe airway diseases. Am. J. Respir. Crit. Care Med. 158, 985–990 (1998).

    CAS  PubMed  Google Scholar 

  64. Joos, G. F., De Swert, K. O., Schelfhout, V. & Pauwels, R. A. The role of neural inflammation in asthma and chronic obstructive pulmonary disease. Ann. NY Acad. Sci. 992, 218–230 (2003).

    ADS  CAS  PubMed  Google Scholar 

  65. Lewis, M. J., Short, A. L. & Lewis, K. E. Autonomic nervous system control of the cardiovascular and respiratory systems in asthma. Respir. Med. 100, 1688–1705 (2006).

    CAS  PubMed  Google Scholar 

  66. Brightling, C. E. et al. Mast-cell infiltration of airway smooth muscle in asthma. N. Engl. J. Med. 346, 1699–1705 (2002).

    PubMed  Google Scholar 

  67. Cohn, L., Elias, J. A. & Chupp, G. L. Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol. 22, 789–815 (2004).

    CAS  PubMed  Google Scholar 

  68. Gern, J. E. & Busse, W. W. Relationship of viral infections to wheezing illnesses and asthma. Nature Rev. Immunol. 2, 132–138 (2002).

    CAS  Google Scholar 

  69. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. & Hamid, Q. A. New insights into atopic dermatitis. J. Clin. Invest. 113, 651–657 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pawankar, R., Nonaka, M., Yamagishi, S. & Yagi, T. Pathophysiologic mechanisms of chronic rhinosinusitis. Immunol. Allergy Clin. North Am. 24, 75–85 (2004).

    PubMed  Google Scholar 

  71. Takano, K. et al. HLA-DR- and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J. Histochem. Cytochem. 53, 611–619 (2005).

    CAS  PubMed  Google Scholar 

  72. Spergel, J. M. & Paller, A. S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 112, S118–S127 (2003).

    PubMed  Google Scholar 

  73. Barnes, P. J. Immunology of asthma and chronic obstructive pulmonary disease. Nature Rev. Immunol. 8, 183–192 (2008).

    ADS  CAS  Google Scholar 

  74. Kawakami, T. & Galli, S. J. Regulation of mast-cell and basophil function and survival by IgE. Nature Rev. Immunol. 2, 773–786 (2002).

    CAS  Google Scholar 

  75. Yu, M. et al. Mast cells can promote the development of multiple features of chronic asthma in mice. J. Clin. Invest. 116, 1633–1641 (2006). This paper presents evidence that mast cells can contribute to multiple features of the pathology in a mouse model of chronic asthma both by mechanisms that do or do not require the antibody (IgE and/or IgG1)-dependent activation of mast cells through the FcRγ chain shared by mast-cell FcɛRI and FcγRIII.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jacobsen, E. A. et al. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J. Exp. Med. 205, 699–710 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Peters-Golden, M. The alveolar macrophage: the forgotten cell in asthma. Am. J. Respir. Cell Mol. Biol. 31, 3–7 (2004).

    CAS  PubMed  Google Scholar 

  78. Kasperska-Zajac, A. & Rogala, B. Platelet activation during allergic inflammation. Inflammation 30, 161–166 (2007).

    CAS  PubMed  Google Scholar 

  79. Akbari, O. et al. CD4+ invariant T-cell-receptor+ natural killer T cells in bronchial asthma. N. Engl. J. Med. 354, 1117–1129 (2006).

    CAS  PubMed  Google Scholar 

  80. Vijayanand, P. et al. Invariant natural killer T cells in asthma and chronic obstructive pulmonary disease. N. Engl. J. Med. 356, 1410–1422 (2007).

    CAS  PubMed  Google Scholar 

  81. Holgate, S. T., Djukanovic, R., Casale, T. & Bousquet, J. Anti-immunoglobulin E treatment with omalizumab in allergic diseases: an update on anti-inflammatory activity and clinical efficacy. Clin. Exp. Allergy 35, 408–416 (2005).

    CAS  PubMed  Google Scholar 

  82. Casale, T. B. et al. Effect of omalizumab on symptoms of seasonal allergic rhinitis: a randomized controlled trial. J. Am. Med. Assoc. 286, 2956–2967 (2001).

    CAS  Google Scholar 

  83. Leung, D. Y. et al. Effect of anti-IgE therapy in patients with peanut allergy. N. Engl. J. Med. 348, 986–993 (2003).

    CAS  PubMed  Google Scholar 

  84. Akdis, C. A., Blaser, K. & Akdis, M. Apoptosis in tissue inflammation and allergic disease. Curr. Opin. Immunol. 16, 717–723 (2004).

    CAS  PubMed  Google Scholar 

  85. Ryan, J. J. et al. Mast cell homeostasis: a fundamental aspect of allergic disease. Crit. Rev. Immunol. 27, 15–32 (2007).

    CAS  PubMed  Google Scholar 

  86. Medoff, B. D., Thomas, S. Y. & Luster, A. D. T cell trafficking in allergic asthma: the ins and outs. Annu. Rev. Immunol. 26, 205–232 (2008). This is a comprehensive review of the molecular regulation and consequences of T-cell migration in allergic inflammation of airways.

    CAS  PubMed  Google Scholar 

  87. Grimbaldeston, M. A., Nakae, S., Kalesnikoff, J., Tsai, M. & Galli, S. J. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nature Immunol. 8, 1095–1104 (2007).

    CAS  Google Scholar 

  88. Serhan, C. N., Yacoubian, S. & Yang, R. Anti-inflammatory and proresolving lipid mediators. Annu. Rev. Pathol. 3, 279–312 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Opal, S. M. & DePalo, V. A. Anti-inflammatory cytokines. Chest 117, 1162–1172 (2000).

    CAS  PubMed  Google Scholar 

  90. Letterio, J. J. & Roberts, A. B. Regulation of immune responses by TGF-β. Annu. Rev. Immunol. 16, 137–161 (1998).

    CAS  PubMed  Google Scholar 

  91. Li, M. O. & Flavell, R. A. Contextual regulation of inflammation: a duet by transforming growth factor-β and interleukin-10. Immunity 28, 468–476 (2008).

    PubMed  Google Scholar 

  92. Burgel, P. R. et al. Human eosinophils induce mucin production in airway epithelial cells via epidermal growth factor receptor activation. J. Immunol. 167, 5948–5954 (2001).

    CAS  PubMed  Google Scholar 

  93. Vignali, D. A. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nature Rev. Immunol. 8, 523–532 (2008).

    CAS  Google Scholar 

  94. Hall, I. P. & Sayers, I. Pharmacogenetics and asthma: false hope or new dawn? Eur. Respir. J. 29, 1239–1245 (2007).

    CAS  PubMed  Google Scholar 

  95. Zhu, D. et al. A chimeric human–cat fusion protein blocks cat-induced allergy. Nature Med. 11, 446–449 (2005).

    CAS  PubMed  Google Scholar 

  96. Lack, G., Fox, D., Northstone, K. & Golding, J. Factors associated with the development of peanut allergy in childhood. N. Engl. J. Med. 348, 977–985 (2003).

    PubMed  Google Scholar 

  97. Platts-Mills, T. A., Vervloet, D., Thomas, W. R., Aalberse, R. C. & Chapman, M. D. Indoor allergens and asthma: report of the Third International Workshop. J. Allergy Clin. Immunol. 100, S2–S24 (1997).

    CAS  PubMed  Google Scholar 

  98. Ownby, D. R. & Johnson, C. C. Does exposure to dogs and cats in the first year of life influence the development of allergic sensitization? Curr. Opin. Allergy Clin. Immunol. 3, 517–522 (2003).

    PubMed  Google Scholar 

  99. Lucas, S. R. & Platts-Mills, T. A. Physical activity and exercise in asthma: relevance to etiology and treatment. J. Allergy Clin. Immunol. 115, 928–934 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. Berry and J. Kalesnikoff for help with the figures, C. M. Hawrylowicz and members of the Galli laboratory for critical reading of the manuscript, and the National Institutes of Health for financial support.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

S.J.G. is occasionally a consultant for Genentech and Novartis, which produce omalizumab (an anti-asthma therapeutic that is mentioned in this Review). S.J.G. is also on the Scientific Advisory Board of Tunitas Therapeutics, which hopes to develop products for treating allergies and asthma.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to S.J.G. (sgalli@stanford.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, S., Tsai, M. & Piliponsky, A. The development of allergic inflammation. Nature 454, 445–454 (2008). https://doi.org/10.1038/nature07204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07204

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing