Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The circadian molecular clock creates epidermal stem cell heterogeneity

This article has been updated

Abstract

Murine epidermal stem cells undergo alternate cycles of dormancy and activation, fuelling tissue renewal. However, only a subset of stem cells becomes active during each round of morphogenesis, indicating that stem cells coexist in heterogeneous responsive states. Using a circadian-clock reporter-mouse model, here we show that the dormant hair-follicle stem cell niche contains coexisting populations of cells at opposite phases of the clock, which are differentially predisposed to respond to homeostatic cues. The core clock protein Bmal1 modulates the expression of stem cell regulatory genes in an oscillatory manner, to create populations that are either predisposed, or less prone, to activation. Disrupting this clock equilibrium, through deletion of Bmal1 (also known as Arntl) or Per1/2, resulted in a progressive accumulation or depletion of dormant stem cells, respectively. Stem cell arrhythmia also led to premature epidermal ageing, and a reduction in the development of squamous tumours. Our results indicate that the circadian clock fine-tunes the temporal behaviour of epidermal stem cells, and that its perturbation affects homeostasis and the predisposition to tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The molecular clock regulates the expression of the bulge stem cell signature.
Figure 2: Circadian binding of Bmal to the promoters of genes involved in adhesion, cell cycle, TGF-β and Wnt pathways.
Figure 3: Bmal1 modulates the response of bulge stem cells to activation and dormancy cues.
Figure 4: Clock perturbation in vivo results in changes in the number of dormant bulge stem cells, and premature epidermal ageing.
Figure 5: Loss of Bmal1 reduces the development of squamous tumours.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Microarray data can be retrieved from the Gene Expression Omnibus under accession number GSE27079.

Change history

  • 07 December 2011

    Author H.-Y.M.C. was added.

References

  1. Fuchs, E. The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137, 811–819 (2009)

    Article  CAS  Google Scholar 

  2. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnol. 22, 411–417 (2004)

    Article  CAS  Google Scholar 

  3. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Jaks, V. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genet. 40, 1291–1299 (2008)

    Article  CAS  Google Scholar 

  5. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010)

    Article  ADS  CAS  Google Scholar 

  6. Jensen, K. B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4, 427–439 (2009)

    Article  CAS  Google Scholar 

  7. Jensen, U. B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci. 121, 609–617 (2008)

    Article  CAS  Google Scholar 

  8. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl Acad. Sci. USA 104, 10063–10068 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Guasch, G. et al. Loss of TGFβ signaling destabilizes homeostasis and promotes squamous cell carcinomas in stratified epithelia. Cancer Cell 12, 313–327 (2007)

    Article  CAS  Google Scholar 

  11. Plikus, M. V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340–344 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Zhang, Y. V., Cheong, J., Ciapurin, N., McDermitt, D. J. & Tumbar, T. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5, 267–278 (2009)

    Article  CAS  Google Scholar 

  13. Greco, V. et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155–169 (2009)

    Article  CAS  Google Scholar 

  14. Enshell-Seijffers, D., Lindon, C., Kashiwagi, M. & Morgan, B. A. β-Catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Dev. Cell 18, 633–642 (2010)

    Article  CAS  Google Scholar 

  15. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A. & Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8, 552–565 (2011)

    Article  CAS  Google Scholar 

  16. Flores, I., Cayuela, M. L. & Blasco, M. A. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 309, 1253–1256 (2005)

    Article  ADS  CAS  Google Scholar 

  17. Owens, D. M. & Watt, F. M. Contribution of stem cells and differentiated cells to epidermal tumours. Nature Rev. Cancer 3, 444–451 (2003)

    Article  CAS  Google Scholar 

  18. Watt, F. M., Frye, M. & Benitah, S. A. MYC in mammalian epidermis: how can an oncogene stimulate differentiation? Nature Rev. Cancer 8, 234–242 (2008)

    Article  CAS  Google Scholar 

  19. Benitah, S. A., Frye, M., Glogauer, M. & Watt, F. M. Stem cell depletion through epidermal deletion of Rac1. Science 309, 933–935 (2005)

    Article  ADS  Google Scholar 

  20. Morris, R. J. A perspective on keratinocyte stem cells as targets for skin carcinogenesis. Differentiation 72, 381–386 (2004)

    Article  Google Scholar 

  21. Dibner, C., Schibler, U. & Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517–549 (2010)

    Article  CAS  Google Scholar 

  22. Cheng, H. Y. et al. Segregation of expression of mPeriod gene homologs in neurons and glia: possible divergent roles of mPeriod1 and mPeriod2 in the brain. Hum. Mol. Genet. 18, 3110–3124 (2009)

    Article  CAS  Google Scholar 

  23. Kuhlman, S. J., Quintero, J. E. & McMahon, D. G. GFP fluorescence reports period 1 circadian gene regulation in the mammalian biological clock. Neuroreport 11, 1479–1482 (2000)

    Article  CAS  Google Scholar 

  24. Schneider, M. R., Schmidt-Ullrich, R. & Paus, R. The hair follicle as a dynamic miniorgan. Curr. Biol. 19, R132–R142 (2009)

    Article  CAS  Google Scholar 

  25. Bunger, M. K. et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103, 1009–1017 (2000)

    Article  CAS  Google Scholar 

  26. Lin, K. K. et al. Circadian clock genes contribute to the regulation of hair follicle cycling. PLoS Genet. 5, e1000573 (2009)

    Article  Google Scholar 

  27. Kondratov, R. V., Kondratova, A. A., Gorbacheva, V. Y., Vykhovanets, O. V. & Antoch, M. P. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 20, 1868–1873 (2006)

    Article  CAS  Google Scholar 

  28. Kameda, T. & Sugiyama, T. Application of genetically modified feeder cells for culture of keratinocytes. Methods Mol. Biol. 289, 29–38 (2005)

    PubMed  Google Scholar 

  29. Zheng, B. et al. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105, 683–694 (2001)

    Article  CAS  Google Scholar 

  30. Barradas, M. et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev. 23, 1177–1182 (2009)

    Article  CAS  Google Scholar 

  31. Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Med. 11, 1351–1354 (2005)

    Article  CAS  Google Scholar 

  32. Gatfield, D. et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 23, 1313–1326 (2009)

    Article  CAS  Google Scholar 

  33. Rogler, C. E. et al. MicroRNA-23b cluster microRNAs regulate transforming growth factor-β/bone morphogenetic protein signaling and liver stem cell differentiation by targeting Smads. Hepatology 50, 575–584 (2009)

    Article  CAS  Google Scholar 

  34. Fu, L. & Lee, C. C. The circadian clock: pacemaker and tumour suppressor. Nature Rev. Cancer 3, 350–361 (2003)

    Article  CAS  Google Scholar 

  35. Sibilia, M. et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell 102, 211–220 (2000)

    Article  CAS  Google Scholar 

  36. Malanchi, I. et al. Cutaneous cancer stem cell maintenance is dependent on β-catenin signalling. Nature 452, 650–653 (2008)

    Article  ADS  CAS  Google Scholar 

  37. Owens, D. M., Romero, M. R., Gardner, C. & Watt, F. M. Suprabasal α6β4 integrin expression in epidermis results in enhanced tumourigenesis and disruption of TGFβ signalling. J. Cell Sci. 116, 3783–3791 (2003)

    Article  CAS  Google Scholar 

  38. Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007)

    Article  ADS  CAS  Google Scholar 

  39. Storch, K. F. et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell 130, 730–741 (2007)

    Article  CAS  Google Scholar 

  40. Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627–631 (2010)

    Article  ADS  CAS  Google Scholar 

  41. Lamia, K. A., Storch, K. F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008)

    Article  ADS  CAS  Google Scholar 

  42. Méndez-Ferrer, S., Lucas, D., Battista, M. & Frenette, P. S. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452, 442–447 (2008)

    Article  ADS  Google Scholar 

  43. Jensen, K. B., Driskell, R. R. & Watt, F. M. Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nature Protocols 5, 898–911 (2010)

    Article  CAS  Google Scholar 

  44. Litchi, U., Anders, J. & Yuspa, S. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nature Protocols 5, 799–810 (2008)

    Google Scholar 

  45. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998)

    Article  CAS  Google Scholar 

  46. Nowak, J. A. & Fuchs, E. Isolation and culture of epithelial stem cells. Methods Mol. Biol. 482, 215–232 (2009)

    Article  CAS  Google Scholar 

  47. Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualization of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003)

    Article  CAS  Google Scholar 

  48. Sun, F. et al. Characterization of function and regulation of miR-24-1 and miR-31. Biochem. Biophys. Res. Commun. 380, 660–665 (2009)

    Article  CAS  Google Scholar 

  49. Ripperger, J. & Schibler, U. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nature Genet. 38, 369–374 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the AICR (Association for International Cancer Research), the Spanish Ministry of Health (FIS) and AGAUR (Agència de Gestió d'Ajuts Universitaris i de Recerca; Government of Cataluña) for financial support. P.J. is the recipient of an AGAUR PhD Fellowship, and G.P. of a FIS fellowship. We thank D. McMahon (Vanderbilt University) for providing us with the Per1–GFP mice; E. Wagner (CNIO) for the K5-SOS mice; B. Kübler, the FACS and Genomics units of the IRB (Institute de Recerca Biomedica), the CRG (Center for Genomic Regulation) core facilities and the Animal Unit (Juan Martin Caballero) for technical support.

Author information

Authors and Affiliations

Authors

Contributions

P.J. performed the experiments, and P.J. and S.A.B. analysed the results and wrote the manuscript. G.P. performed the analysis of K5-SOS mice, and A.M. and E.B. assisted P.J. in the initial FACS sorts. L.D.C. helped us with the initial ChIP experiments. K.O. provided the Per1–venus mice and H.-Y.M.C. generated the Per1–venus mice. J.R. and U.A. provided the Per1/Per2dKO mice.

Corresponding author

Correspondence to Salvador Aznar Benitah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-17 with legends and Supplementary Tables 2, 4 and 5 (see separate files for Supplementary Tables 1 and 3). (PDF 3030 kb)

Supplementary Table 1

This table contains affymetrix microarray data comparing Venusbright and Venusdim bulge cells of P19 Per1-Venus mice. (XLS 9142 kb)

Supplementary Table 3

This table contains affymetrix microarray data comparing basal epidermal cells of 10 months old Bmal1WT and Bmal1KO mice. (XLS 4179 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janich, P., Pascual, G., Merlos-Suárez, A. et al. The circadian molecular clock creates epidermal stem cell heterogeneity. Nature 480, 209–214 (2011). https://doi.org/10.1038/nature10649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10649

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer