Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the human glucagon class B G-protein-coupled receptor

Abstract

Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a ‘stalk’ region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain (12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagon’s amino terminus into the seven transmembrane domain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the 7TM domain of human GCGR and comparison to class A GPCR structures.
Figure 2: Comparison of the ligand-binding pocket of GCGR with class A GPCRs.
Figure 3: Structural features of class B GPCRs.
Figure 4: Effects of mutation studies in GCGR snake plot.
Figure 5: Model of GCGR bound to glucagon.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Data deposits

The coordinates and the structure factors have been deposited in the Protein Data Bank under the accession code 4L6R.

References

  1. Lagerström, M. C. & Schioth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Rev. Drug Discov. 7, 339–357 (2008)

    Article  Google Scholar 

  2. Cho, Y. M., Merchant, C. E. & Kieffer, T. J. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol. Ther. 135, 247–278 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. Katritch, V., Cherezov, V. & Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. Hoare, S. R. Mechanisms of peptide and nonpeptide ligand binding to class B G-protein-coupled receptors. Drug Discov. Today 10, 417–427 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Pal, K., Melcher, K. & Xu, H. E. Structure and mechanism for recognition of peptide hormones by Class B G-protein-coupled receptors. Acta Pharmacol. Sin. 33, 300–311 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Koth, C. M. et al. Molecular basis for negative regulation of the glucagon receptor. Proc. Natl Acad. Sci. USA 109, 14393–14398 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  7. Parthier, C., Reedtz-Runge, S., Rudolph, R. & Stubbs, M. T. Passing the baton in class B GPCRs: peptide hormone activation via helix induction? Trends Biochem. Sci. 34, 303–310 (2009)

    Article  CAS  PubMed  Google Scholar 

  8. Underwood, C. R. et al. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. J. Biol. Chem. 285, 723–730 (2010)

    Article  CAS  PubMed  Google Scholar 

  9. Yaqub, T. et al. Identification of determinants of glucose-dependent insulinotropic polypeptide receptor that interact with N-terminal biologically active region of the natural ligand. Mol. Pharmacol. 77, 547–558 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Miller, L. J., Dong, M., Harikumar, K. G. & Gao, F. Structural basis of natural ligand binding and activation of the Class II G-protein-coupled secretin receptor. Biochem. Soc. Trans. 35, 709–712 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Dong, M. et al. Mapping spatial approximations between the amino terminus of secretin and each of the extracellular loops of its receptor using cysteine trapping. FASEB J. 26, 5092–5105 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, L. J. et al. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling. J. Biol. Chem. 286, 15895–15907 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong, M. et al. Molecular basis of secretin docking to its intact receptor using multiple photolabile probes distributed throughout the pharmacophore. J. Biol. Chem. 286, 23888–23899 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gensure, R. C., Shimizu, N., Tsang, J. & Gardella, T. J. Identification of a contact site for residue 19 of parathyroid hormone (PTH) and PTH-related protein analogs in transmembrane domain two of the type 1 PTH receptor. Mol. Endocrinol. 17, 2647–2658 (2003)

    Article  CAS  PubMed  Google Scholar 

  15. de Graaf, C., Rein, C., Piwnica, D., Giordanetto, F. & Rognan, D. Structure-based discovery of allosteric modulators of two related class B G-protein-coupled receptors. ChemMedChem 6, 2159–2169 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Chun, E. et al. Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20, 967–976 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences Vol. 25 (ed. Sealfon, S. C. ) 366–428 (Academic Press, 1995)

    Google Scholar 

  18. Wootten, D., Simms, J., Miller, L. J., Christopoulos, A. & Sexton, P. M. Polar transmembrane interactions drive formation of ligand-specific and signal pathway-biased family B G protein-coupled receptor conformations. Proc. Natl Acad. Sci. USA 110, 5211–5216 (2013)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  19. Unson, C. G. et al. Roles of specific extracellular domains of the glucagon receptor in ligand binding and signaling. Biochemistry 41, 11795–11803 (2002)

    Article  CAS  PubMed  Google Scholar 

  20. Xiao, Q., Jeng, W. & Wheeler, M. B. Characterization of glucagon-like peptide-1 receptor-binding determinants. J. Mol. Endocrinol. 25, 321–335 (2000)

    Article  CAS  PubMed  Google Scholar 

  21. Roberts, D. J., Vertongen, P. & Waelbroeck, M. Analysis of the glucagon receptor first extracellular loop by the substituted cysteine accessibility method. Peptides 32, 1593–1599 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. Wu, H. et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  23. Manglik, A. et al. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  24. Fredriksson, R., Lagerstrom, M. C., Lundin, L. G. & Schioth, H. B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 63, 1256–1272 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Venkatakrishnan, A. J. et al. Molecular signatures of G-protein-coupled receptors. Nature 494, 185–194 (2013)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Inooka, H. et al. Conformation of a peptide ligand bound to its G-protein coupled receptor. Nature Struct. Biol. 8, 161–165 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Prévost, M. et al. Mutational and cysteine scanning analysis of the glucagon receptor N-terminal domain. J. Biol. Chem. 285, 30951–30958 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahn, J. M., Medeiros, M., Trivedi, D. & Hruby, V. J. Development of potent truncated glucagon antagonists. J. Med. Chem. 44, 1372–1379 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Coopman, K. et al. Residues within the transmembrane domain of the glucagon-like peptide-1 receptor involved in ligand binding and receptor activation: modelling the ligand-bound receptor. Mol. Endocrinol. 25, 1804–1818 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Di Paolo, E. et al. Contribution of the second transmembrane helix of the secretin receptor to the positioning of secretin. FEBS Lett. 424, 207–210 (1998)

    Article  CAS  PubMed  Google Scholar 

  31. Perret, J. et al. Mutational analysis of the glucagon receptor: similarities with the vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating peptide (PACAP)/secretin receptors for recognition of the ligand's third residue. Biochem. J. 362, 389–394 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Runge, S. et al. Three distinct epitopes on the extracellular face of the glucagon receptor determine specificity for the glucagon amino terminus. J. Biol. Chem. 278, 28005–28010 (2003)

    Article  CAS  PubMed  Google Scholar 

  33. Neumann, J. M. et al. Class-B GPCR activation: is ligand helix-capping the key? Trends Biochem. Sci. 33, 314–319 (2008)

    Article  CAS  PubMed  Google Scholar 

  34. Cascieri, M. A. et al. Characterization of a novel, non-peptidyl antagonist of the human glucagon receptor. J. Biol. Chem. 274, 8694–8697 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. Di Paolo, E. et al. Mutations of aromatic residues in the first transmembrane helix impair signalling by the secretin receptor. Receptors Channels 6, 309–315 (1999)

    CAS  PubMed  Google Scholar 

  36. Koole, C. et al. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) has a critical role in GLP-1 peptide binding and receptor activation. J. Biol. Chem. 287, 3642–3658 (2012)

    Article  CAS  PubMed  Google Scholar 

  37. Tseng, C. C. & Lin, L. A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity. Biochem. Biophys. Res. Commun. 232, 96–100 (1997)

    Article  CAS  PubMed  Google Scholar 

  38. Ganguli, S. C. et al. Protean effects of a natural peptide agonist of the G protein-coupled secretin receptor demonstrated by receptor mutagenesis. J. Pharmacol. Exp. Ther. 286, 593–598 (1998)

    CAS  PubMed  Google Scholar 

  39. Solano, R. M. et al. Two basic residues of the h-VPAC1 receptor second transmembrane helix are essential for ligand binding and signal transduction. J. Biol. Chem. 276, 1084–1088 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Ceraudo, E. et al. Spatial proximity between the VPAC1 receptor and the amino terminus of agonist and antagonist peptides reveals distinct sites of interaction. FASEB J. 26, 2060–2071 (2012)

    Article  CAS  PubMed  Google Scholar 

  41. Tan, Y. V., Couvineau, A. & Laburthe, M. Diffuse pharmacophoric domains of vasoactive intestinal peptide (VIP) and further insights into the interaction of VIP with the N-terminal ectodomain of human VPAC1 receptor by photoaffinity labeling with [Bpa6]-VIP. J. Biol. Chem. 279, 38889–38894 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. Caffrey, M. & Cherezov, V. Crystallizing membrane proteins using lipidic mesophases. Nature Protocols 4, 706–731 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Paolo, E. et al. Role of charged amino acids conserved in the vasoactive intestinal polypeptide/secretin family of receptors on the secretin receptor functionality. Peptides 20, 1187–1193 (1999)

    Article  CAS  PubMed  Google Scholar 

  44. Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Hanson, M. A. et al. Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. Protein Expr. Purif. 56, 85–92 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Misquitta, Y. & Caffrey, M. Detergents destabilize the cubic phase of monoolein: implications for membrane protein crystallization. Biophys. J. 85, 3084–3096 (2003)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  47. Cherezov, V., Peddi, A., Muthusubramaniam, L., Zheng, Y. F. & Caffrey, M. A robotic system for crystallizing membrane and soluble proteins in lipidic mesophases. Acta Crystallogr. D 60, 1795–1807 (2004)

    Article  PubMed  Google Scholar 

  48. Xu, F., Liu, W., Hanson, M. A., Stevens, R. C. & Cherezov, V. Development of an automated high throughput LCP-FRAP assay to guide membrane protein crystallization in lipid mesophases. Cryst. Growth Des. 11, 1193–1201 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cherezov, V. et al. Rastering strategy for screening and centring of microcrystal samples of human membrane proteins with a sub-10 µm size X-ray synchrotron beam. J. R. Soc. Interface 6 (Suppl 5). S587–S597 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  PubMed  Google Scholar 

  51. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystalogr. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  52. Terwilliger, T. C. et al. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX AutoSol wizard. Acta Crystallogr. D 65, 582–601 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Terwilliger, T. C. et al. phenix. mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta. J. Struct. Funct. Genomics 13, 81–90 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwarzenbacher, R., Godzik, A. & Jaroszewski, L. The JCSG MR pipeline: optimized alignments, multiple models and parallel searches. Acta Crystallogr. D 64, 133–140 (2008)

    Article  CAS  PubMed  Google Scholar 

  55. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997)

    Article  CAS  PubMed  Google Scholar 

  56. BUSTER. v. 2.8.0 (Global Phasing, Cambridge, UK, 2009)

  57. Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D 64, 61–69 (2008)

    Article  CAS  PubMed  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bhat, T. Calculation of an OMIT map. J. Appl. Crystallogr. 21, 279–281 (1988)

    Article  Google Scholar 

  60. ICM. Manual v. 3.0 (MolSoft, La Jolla, California, 2012)

  61. Arnautova, Y. A., Abagyan, R. A. & Totrov, M. Development of a new physics-based internal coordinate mechanics force field and its application to protein loop modeling. Proteins 79, 477–498 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Roadmap grant P50 GM073197 for technology development (V.C. and R.C.S.), and PSI:Biology grant U54 GM094618 for biological studies and structure production (target GPCR-49) (V.K., V.C. and R.C.S.); PSI:Biology grant U54 GM094586 for structure QC; The Ministry of Health grants 2012ZX09304-011 and 2013ZX09507002 (M.-W.W.), Shanghai Science and Technology Development Fund 11DZ2292200 (M.-W.W.); Novo Nordisk-Chinese Academy of Sciences Research Fund NNCAS-2011-7 (M.-W.W.); Thousand Talents Program in China (R.C.S. and M.-W.W.); NIH Postdoctoral Training Grant (NRSA) F32 DK088392 (F.Y.S.); The Netherlands Organization for Scientific Research (NWO) through a VENI grant (Grant 700.59.408 to C.d.G.); COST Action CM1207, GLISTEN (C.d.G). We also thank V. Hruby and M. Cai for advice with the glucagon binding assay and general discussions; J. Velasquez for help with molecular biology; T. Trinh and M. Chu for help with baculovirus expression; K. Kadyshevskaya for assistance with figure preparation; X. Q. Cai, J. Wang, Y. Feng, A. T. Dai, Y. Zhou, J. J. Deng, Y. B. Dai and J. W. Zhao for technical assistance in mutation studies; A. Walker for assistance with manuscript preparation; and J. Smith and R. Fischetti for assistance in development and use of the minibeam and beamtime at GM/CA-CAT beamline 23-ID at the Advanced Photon Source, which is supported by National Cancer Institute grant Y1-CO-1020 and National Institute of General Medical Sciences grant Y1-GM-1104.

Author information

Authors and Affiliations

Authors

Contributions

F.Y.S. designed, expressed, characterized and screened constructs and ligands for crystallization. F.Y.S. purified and crystallized the receptor in LCP, optimized crystallization conditions, grew crystals, collected diffraction data and prepared the manuscript. G.W.H. and Q.X. solved and refined the structure, and prepared the manuscript. V.C. collected and processed diffraction data, and prepared the manuscript. M.H., D.Y., Z.Z. and C.Z. expressed the receptor, and performed the mutagenesis and ligand-binding assay. V.K. and C.d.G. designed and analysed the receptor mutagenesis studies, constructed the receptor–ligand model and prepared the manuscript. D.W. and J.S.J. collected and processed SAD data and determined an initial electron density map from experimental phases. W.L. and V.C. trained and assisted in LCP crystallization. J.L. provided ligands for GCGR and prepared the manuscript. R.C.S., F.Y.S., M.-W.W., V.K., V.C. and C.d.G. were responsible for the overall project strategy and management and wrote the manuscript.

Corresponding authors

Correspondence to Ming-Wei Wang or Raymond C. Stevens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-6, Supplementary Figures 1-10 and Supplementary References. (PDF 1596 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siu, F., He, M., de Graaf, C. et al. Structure of the human glucagon class B G-protein-coupled receptor. Nature 499, 444–449 (2013). https://doi.org/10.1038/nature12393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12393

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing