Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug

Abstract

In our quest to understand why dimethyl sulfoxide (DMSO) can cause growth arrest and terminal differentiation of transformed cells, we followed a path that led us to discover suberoylanilide hydroxamic acid (SAHA; vorinostat (Zolinza)), which is a histone deacetylase inhibitor. SAHA reacts with and blocks the catalytic site of these enzymes. Extensive structure-activity studies were done along the path from DMSO to SAHA. SAHA can cause growth arrest and death of a broad variety of transformed cells both in vitro and in tumor-bearing animals at concentrations not toxic to normal cells. SAHA has many protein targets whose structure and function are altered by acetylation, including chromatin-associated histones, nonhistone gene transcription factors and proteins involved in regulation of cell proliferation, migration and death. In clinical trials, SAHA has shown significant anticancer activity against both hematologic and solid tumors at doses well tolerated by patients. A new drug application was approved by the US Food and Drug Administration for vorinostat for treatment of cutaneous T-cell lymphoma. More potent analogs of SAHA have shown unacceptable toxicity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Marks, P. et al. Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lehrmann, H., Pritchard, L.L. & Harel-Bellan, A. Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation. Adv. Cancer Res. 86, 41–65 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Marks, P.A. & Dokmanovic, M. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin. Investig. Drugs 14, 1497–1511 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Bolden, J.E., Peart, M.J. & Johnstone, R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug Discov. 5, 769–784 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Mitsiades, C.S. et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl. Acad. Sci. USA 101, 540–545 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Peart, M.J. et al. Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA 102, 3697–3702 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scott, G.K., Mattie, M.D., Berger, C.E., Benz, S.C. & Benz, C.C. Rapid alteration of microRNA levels by histone deacetylase inhibition. Cancer Res. 66, 1277–1281 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Rosato, R.R., Almenara, J.A., Dai, Y. & Grant, S. Simultaneous activation of the intrinsic and extrinsic pathways by histone deacetylase (HDAC) inhibitors and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) synergistically induces mitochondrial damage and apoptosis in human leukemia cells. Mol. Cancer Ther. 2, 1273–1284 (2003).

    CAS  PubMed  Google Scholar 

  9. Shao, Y., Gao, Z., Marks, P.A. & Jiang, X. Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA 101, 18030–18035 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kelly, W.K. et al. Phase I study of the oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), in patients with advanced cancer. J. Clin. Oncol. 23, 3923–3931 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. O'Connor, O.A. et al. Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J. Clin. Oncol. 24, 166–173 (2005).

    Article  PubMed  Google Scholar 

  12. Marks, P.A., Rifkind, R.A., Richon, V.M. & Breslow, R. Inhibitors of histone deacetylase are potentially effective anticancer agents. Clin. Cancer Res. 7, 759–760 (2001).

    CAS  PubMed  Google Scholar 

  13. Bhalla, K.N. Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J. Clin. Oncol. 23, 3971–3993 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Monneret, C. Histone deacetylase inhibitors. Eur. J. Med. Chem. 40, 1–13 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hess-Stumpp, H. Histone deacetylase inhibitors and cancer: from cell biology to the clinic. Eur. J. Cell Biol. 84, 109–121 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Moradei, O., Maroun, C.R., Paquin, I. & Vaisburg, A. Histone deacetylase inhibitors: latest developments, trends and prospects. Curr. Med. Chem. Anticancer Agents 5, 529–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Peixoto, P. & Lansiaux, A. Histone-deacetylases inhibitors: from TSA to SAHA. Bull. Cancer 93, 27–36 (2006).

    CAS  PubMed  Google Scholar 

  18. Yoo, C.B. & Jones, P.A. Epigenetic therapy of cancer: past, present and future. Nat. Rev. Drug Discov. 5, 37–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Minucci, S. & Pelicci, P.G. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev. Cancer 6, 38–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Friend, C., Scher, W., Holland, J.G. & Sato, T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc. Natl. Acad. Sci. USA 68, 378–382 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bank, A. & Marks, P.A. Excess α chain synthesis relative to β chain synthesis in thalassemia major and minor. Nature 212, 1198–2000 (1966).

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka, M. et al. Induction of erythroid differentiation in murine virus infected eythroleukemia cells by highly polar compounds. Proc. Natl. Acad. Sci. USA 72, 1003–1006 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reuben, R.C., Wife, R.L., Breslow, R., Rifkind, R.A. & Marks, P.A. A new group of potent inducers of differentiation in murine erythroleukemia cells. Proc. Natl. Acad. Sci. USA 73, 862–866 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marks, P.A. & Rifkind, R.A. Erythroleukemic differentiation. Annu. Rev. Biochem. 47, 419–448 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Marks, P.A., Sheffery, M. & Rifkind, R.A. Induction of transformed cells to terminal differentiation and the modulation of gene expression. Cancer Res. 47, 659–666 (1987).

    CAS  PubMed  Google Scholar 

  26. Richon, V.M., Ramsay, R.G., Rifkind, R.A. & Marks, P.A. Modulation of the c-myb, c-myc and p53 mRNA and protein levels during induced murine erythroleukemia cell differentiation. Oncogene 4, 165–173 (1989).

    CAS  PubMed  Google Scholar 

  27. Andreeff, M. et al. Hexamethylene bisacetamide in myelodysplastic syndrome and acute myelogenous leukemia: a phase II clinical trial with a differentiation-inducing agent. Blood 80, 2604–2609 (1992).

    CAS  PubMed  Google Scholar 

  28. Breslow, R. et al. Potent cytodifferentiating agents related to hexamethylenebisacetamide. Proc. Natl. Acad. Sci. USA 88, 5542–5546 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Richon, V.M. et al. Second generation hybrid polar compounds are potent inducers of transformed cell differentiation. Proc. Natl. Acad. Sci. USA 93, 5705–5708 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meinke, P.T. & Liberator, P. Histone deacetylase: a target for antiproliferative and antiprotozoal agents. Curr. Med. Chem. 8, 211–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Richon, V.M. et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc. Natl. Acad. Sci. USA 95, 3003–3007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoshida, M., Kijima, M., Akita, M. & Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 265, 17174–17179 (1990).

    CAS  PubMed  Google Scholar 

  33. Miller, T.A., Witter, D.J. & Belvedere, S. Histone deacetylase inhibitors. J. Med. Chem. 46, 5097–5116 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Finnin, M.S. et al. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401, 188–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Drummond, D.C. et al. Clinical development of histone deacetylase inhibitors as anticancer agents. Annu. Rev. Pharmacol. Toxicol. 45, 495–5280 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Johnstone, R.W. & Licht, J.D. Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4, 13–18 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Guo, F. et al. Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res. 64, 2580–2589 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Marks, P.A. & Jiang, X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 4, 549–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ungerstedt, J.S. et al. Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc. Natl. Acad. Sci. USA 102, 673–678 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moradei, O., Maroun, C.R., Paquin, I. & Vaisburg, A. Histone deacetylase inhibitors: latest developments, trends and prospects. Curr. Med. Chem. Anticancer Agents 5, 529–560 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Richon, V.M., Sandhoff, T.W., Rifkind, R.A. & Marks, P.A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl. Acad. Sci. USA 97, 10014–10019 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Butler, L.M. et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc. Natl. Acad. Sci. USA 99, 11700–11705 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gui, C.Y., Ngo, L., Xu, W.S., Richon, V.M. & Marks, P.A. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl. Acad. Sci. USA 101, 1241–1246 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Butler, L.M. et al. Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo. Cancer Res. 60, 5165–5170 (2000).

    CAS  PubMed  Google Scholar 

  45. Yoshida, C. & Melo, J.V. Biology of chronic myeloid leukemia and possible therapeutic approaches to imatinib-resistant disease. Int. J. Hematol. 79, 420–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Fuino, L. et al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol. Cancer Ther. 2, 971–984 (2003).

    CAS  PubMed  Google Scholar 

  47. Bali, P. et al. Activity of suberoylanilide hydroxamic acid against human breast cancer cells with amplification of her-2. Clin. Cancer Res. 11, 6382–6389 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kelly, W.K. & Marks, P. Drug Insight: histone deacetylase inhibitors-development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat. Clin. Pract. Oncol. 2, 150–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Kelly, W.K. et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer Res. 9, 3578–3588 (2003).

    CAS  PubMed  Google Scholar 

  50. Olsen, E. et al. Vorinostat (suberoylanilide hydroxamic acid, SAHA) is clinically active in advanced cutaneous T-cell lymphoma (CTCL): results of phase IIB trial. ASCO Annual Meeting Proceedings Part 1. (June 20 Suppl.) 24, 7500 (2006).

    Google Scholar 

  51. Zhang, C., Richon, V., Ni, X., Talpur, R. & Duvic, M. Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: relevance to mechanism of therapeutic action. J. Invest. Dermatol. 125, 1045–1052 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The studies reviewed in this paper have been supported over the past 30 or more years by grants from the US National Institutes of Health, US National Science Foundation, Susan and Jack Rudin Foundation, David H. Koch Prostate Cancer Research Award, Robert J. and Helen C. Kleberg Foundation, DeWitt Wallace Fund for the MSKCC and the Japan Foundation for the Promotion of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A Marks.

Ethics declarations

Competing interests

Memorial Sloan-Kettering Cancer Center and Columbia University jointly hold patents on hydroxamic-based polar compounds, including SAHA, that were exclusively licensed to Aton Pharma Inc., a biotech company acquired by Merck, Inc. in April 2004. P.A.M. and R.B. were among the founders of Aton and have a financial interest in Merck’s further development of SAHA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marks, P., Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25, 84–90 (2007). https://doi.org/10.1038/nbt1272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing