Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ assembly of enzyme inhibitors using extended tethering

Abstract

Cysteine aspartyl protease-3 (caspase-3) is a mediator of apoptosis and a therapeutic target for a wide range of diseases. Using a dynamic combinatorial technology, 'extended tethering', we identified unique nonpeptidic inhibitors for this enzyme. Extended tethering allowed the identification of ligands that bind to discrete regions of caspase-3 and also helped direct the assembly of these ligands into small-molecule inhibitors. We first designed a small-molecule 'extender' that irreversibly alkylates the cysteine residue of caspase-3 and also contains a thiol group. The modified protein was then screened against a library of disulfide-containing small-molecule fragments. Mass-spectrometry was used to identify ligands that bind noncovalently to the protein and that also form a disulfide linkage with the extender. Linking the selected fragments with binding elements from the extenders generates reversible, tight-binding molecules that are druglike and distinct from known inhibitors. One molecule derived from this approach inhibited apoptosis in cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Extended tethering identifies small chemical fragments.
Figure 3: X-ray crystal structures of caspase-3 in complex with various ligands.
Figure 4: Evolution of selected fragments into reversible inhibitors of caspase-3.
Figure 5: Compound 7 inhibits Fas-induced apoptosis in Jurkat cells.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. McGovern, S.L., Caselli, E., Grigorieff, N. & Shoichet, B.K. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening. J. Med. Chem. 45, 1712–1722 (2002).

    Article  CAS  Google Scholar 

  2. Huc, I. & Lehn, J.M. Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. Proc. Natl. Acad. Sci. USA 94, 2106–2110 (1997).

    Article  CAS  Google Scholar 

  3. Lehn, J.M. & Eliseev, A. Dynamic combinatorial chemistry. Science 291, 2331–2332 (2001).

    Article  CAS  Google Scholar 

  4. Nicolaou, K.C. et al. Synthesis and biological evaluation of vancomycin dimers with potent activity against vancomycin-resistant bacteria: target-accelerated combinatorial synthesis. Chem. Eur. J. 7, 3824–3843 (2001).

    Article  CAS  Google Scholar 

  5. Ramstrom, O. & Lehn, J.M. Drug discovery by dynamic combinatorial libraries. Nat. Rev. Drug Disc. 1, 26–32 (2002).

    Article  CAS  Google Scholar 

  6. Lewis, W.G. et al. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Edn. Engl. 41, 1053–1057 (2002).

    Article  CAS  Google Scholar 

  7. Rowan, S.J., Cantrill, S.J., Cousins, G.R.L., Sanders, J.K.M. & Stoddart, J.F. Dynamic covalent chemistry. Angew. Chem. Int. Edn. Engl. 41, 898–952 (2002).

    Article  Google Scholar 

  8. Erlanson, D. et al. Site-directed ligand discovery. Proc. Natl. Acad. Sci. USA 97, 9367–9372 (2000).

    Article  CAS  Google Scholar 

  9. Shuker, S.B., Hajduk, P.J., Meadows, R.P. & Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  CAS  Google Scholar 

  10. Thornberry, N.A. et al. A combinatorial approach defines specificities of members of the caspase family and Granzyme B. J. Biol. Chem. 272, 17907–17911 (1997).

    Article  CAS  Google Scholar 

  11. Rano, T.A. et al. A combinatorial approach for determining protease specificities: application to interleukin-1β converting enzyme. Chem. Biol. 4, 149–155 (1997).

    Article  CAS  Google Scholar 

  12. Kaufmann, S.H. & Hengartner, M.O. Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 11, 526–534 (2001).

    Article  CAS  Google Scholar 

  13. Utz, P. & Anderson, P. Life and death decisions: regulation of apoptosis by proteolysis of signaling molecules. Cell Death Differ. 7, 589–602 (2000).

    Article  CAS  Google Scholar 

  14. Hengartner, M.O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  CAS  Google Scholar 

  15. Gervais, F. et al. Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation. Cell 97, 395–406 (1999).

    Article  CAS  Google Scholar 

  16. Hotchkiss, R.S. et al. Caspase inhibitors improve survival in sepsis: a critical role of the lymphocyte. Nat. Immunol. 1, 496–501 (2000).

    Article  CAS  Google Scholar 

  17. McBride, C., McPhail, L. & Steeves, J. Emerging therapeutic targets in caspase-dependent disease. Emerg. Therapeutic Targets 3, 391–411 (1999).

    Article  CAS  Google Scholar 

  18. Yue, T.-L., Ohlstein, E. & Ruffolo, R. Apoptosis: a potential target for discovering novel therapies for cardiovascular diseases. Curr. Opin. Chem. Biol. 3, 474–480 (1999).

    Article  CAS  Google Scholar 

  19. Nicholson, D. From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816 (2000).

    Article  CAS  Google Scholar 

  20. Lee, D. et al. Potent and selective nonpeptide inhibitors of caspases-3 and -7 inhibit apoptosis and maintain cell functionality. J. Biol. Chem. 275, 16007–16014 (2000).

    Article  CAS  Google Scholar 

  21. Han, B. et al. Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxia-ischemic brain injury. J. Biol. Chem. 277, 30128–30136 (2002).

    Article  CAS  Google Scholar 

  22. Dolle, R.E. et al. P1 aspartate-based peptide α-((2,6-dichlorobenzoyl)oxy)methyl ketones as potent time-dependent inhibitors of interleukin-1β converting enzyme. J. Med. Chem. 37, 563–564 (1994).

    Article  CAS  Google Scholar 

  23. Arkin, M. et al. Binding of small molecules to an adaptive protein:protein interface. Proc. Natl. Acad. Sci. USA, in press (2003).

  24. Mittl, P.R.E. et al. Structure of recombinant human CPP32 in complex with the tetrapeptide acetyl-asp-val-ala-asp fluoromethyl ketone. J. Biol. Chem. 272, 6539–6547 (1997).

    Article  CAS  Google Scholar 

  25. Margolin, N. et al. Substrate and inhibitor specificity of interleukin-1β-converting enzyme and related caspases. J. Biol. Chem. 272, 7223–7228 (1997).

    Article  CAS  Google Scholar 

  26. Garcia-Calvo, M. et al. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273, 32608–32613 (1998).

    Article  CAS  Google Scholar 

  27. Slee, E.A., Adrain, C. & Martin, S.J. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J. Biol. Chem. 276, 7320–7326 (2001).

    Article  CAS  Google Scholar 

  28. Fry, D.W. et al. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl. Acad. Sci. USA 95, 12022–12027 (1998).

    Article  CAS  Google Scholar 

  29. Tsou, H.R. et al. 6-Substituted-4-(3-bromophenylamino)quinazolines as putative irreversible inhibitors of the epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor (HER-2) tyrosine kinases with enhanced antitumor activity. J. Med. Chem. 44, 2719–2734 (2001).

    Article  CAS  Google Scholar 

  30. Myers, J.K. & Widlanski, T.S. Mechanism-based inactivation of prostatic acid phosphatase. Science 262, 1451–1453 (1993).

    Article  CAS  Google Scholar 

  31. Taylor, W.P., Zhang, Z.Y. & Widlanski, T.S. Quiescent affinity inactivators of protein tyrosine phosphatases. Bioorg. Med. Chem. 4, 1515–1520 (1996).

    Article  CAS  Google Scholar 

  32. Ham, S.W., Park, J., Lee, S.J. & Yoo, J.S. Selective inactivation of protein tyrosine phosphatase PTP1B by sulfone analogue of naphthoquinone. Bioorg. Med. Chem. Lett. 9, 185–186 (1999).

    Article  CAS  Google Scholar 

  33. Arabaci, G., Xiao-Chuan, G., Beebe, K.D., Coggeshall, K.M. & Pei, D. α-Haloacetophenone derivatives as photoreversible covalent inhibitors of protein tyrosine phosphatases. J. Am. Chem. Soc. 121, 5085–5086 (1999).

    Article  CAS  Google Scholar 

  34. Carter, P.H. et al. Photochemically enhanced binding of small molecules to the tumor necrosis factor receptor-1 inhibits the binding of TNF-α. Proc. Natl. Acad. Sci. USA 98, 11879–11884. (2001).

    Article  CAS  Google Scholar 

  35. Choong, I.C. et al. Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-based design. J. Med. Chem. 45, 5005–5022 (2002).

    Article  CAS  Google Scholar 

  36. Thornberry, N.A. et al. Inactivation of interleukin-1β converting enzyme by peptide (acyloxy)methyl ketones. Biochemistry 33, 3934–3940 (1994).

    Article  CAS  Google Scholar 

  37. Pflugrath, J.W. The finer things in X-ray diffraction data collection. Acta Crystallogr. D 55, 1718–1725 (1999).

    Article  CAS  Google Scholar 

  38. Navaza, J. AMORE—an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  39. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by SBIR grant no. 2 R44 CA 85141-03. We thank the staff at SSRL beamline 7.1 for assistance with data collection; Andrew C. Braisted, Darren R. Raphael, and Jeff Jacobs for monophore synthesis; the automation group (Stuart Lam, Thomas Webb, and Alex Hsi) for their help in preparatory HPLC purifications; Simone Evarts and Mark Cancilla for HRMS determinations; James A. Wells for helpful discussions; Jennifer Wilkinson for tissue culture assistance; and Monya L. Baker, Willard Lew, and Robert S. McDowell for critical readings of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel A. Erlanson or Tom O'Brien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlanson, D., Lam, J., Wiesmann, C. et al. In situ assembly of enzyme inhibitors using extended tethering. Nat Biotechnol 21, 308–314 (2003). https://doi.org/10.1038/nbt786

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing