Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A role for chemistry in stem cell biology

Abstract

Although stem cells hold considerable promise for the treatment of numerous diseases including cardiovascular disease, neurodegenerative disease, musculoskeletal disease, diabetes and cancer, obstacles such as the control of stem cell fate, allogenic rejection and limited cell availability must be overcome before their therapeutic potential can be realized. This requires an improved understanding of the signaling pathways that affect stem cell fate. Cell-based phenotypic and pathway-specific screens of natural products and synthetic compounds have recently provided a number of small molecules that can be used to selectively control stem cell proliferation and differentiation. Examples include the selective induction of neurogenesis and cardiomyogenesis in murine embryonic stem cells, osteogenesis in mesenchymal stem cells and dedifferentiation in skeletal muscle cells. Such molecules will likely provide new insights into stem cell biology, and may ultimately contribute to effective medicines for tissue repair and regeneration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Chemical screens and characterizations of small molecules that control stem cell fate.

Bob Crimi

Figure 3: Signaling pathways.

Bob Crimi

Figure 4: Reversine, a 2,6-disubstituted purine, dedifferentiates lineage-committed myoblasts to multipotent mesenchymal progenitor cells.

Similar content being viewed by others

References

  1. Department of Health and Human Services. Stem cells: scientific progress and future research directions (DHHS, Washington, DC, 2001). http://www.nih.gov/news/stemcell/scireport.htm

  2. Hubner, K. et al. Derivation of oocytes from mouse embryonic stem cells. Science 300, 1251–1256 (2003).

    Article  PubMed  Google Scholar 

  3. Toyooka, Y., Tsunekawa, N., Akasu, R. & Noce, T. Embryonic stem cells can form germ cells in vitro. Proc. Natl Acad. Sci. USA 100, 11457–11462 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Geijsen, N. et al. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427, 148–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Draper, J.S. et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat. Biotechnol. 22, 53–54 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Hwang, W.S. et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 303, 1669–1674 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Ehrlich, P. The Collected Papers of Paul Ehrlich in Four Volumes Including a Complete Bibliography. ed. Himmelweit, F. (Pergamon, London, 1956).

    Google Scholar 

  9. Lassar, A.B., Paterson, B.M. & Weintraub, H. Transfection of a DNA locus that mediates the conversion of 10T1/2 fibroblasts to myoblasts. Cell 47, 649–56 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Marks, P.A. et al. Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Maloney, A. & Workman, P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin. Biol. Ther. 2, 3–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Druker, B.J. Perspectives on the development of a molecularly targeted agent. Cancer Cell 1, 31–36 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Albanell, J. & Adams, J. Bortezomib, a proteasome inhibitor, in cancer therapy: from concept to clinic. Drugs of the Future 27, 1079–1092 (2002).

    Article  CAS  Google Scholar 

  14. Ding, S., Gray, N.S., Wu, X., Ding, Q. & Schultz, P.G. A combinatorial scaffold approach toward kinase-directed heterocycle libraries. J. Am. Chem. Soc. 124, 1594–1596 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Wichterle, H., Lieberam, I., Porter, J.A. & Jessell, T.M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Ding, S. et al. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. USA 100, 7632–7637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, S. et al. Isolation of neuronal precursors by sorting embryonic forebrain transfected with GFP regulated by the Ta1 tubulin promoter. Nat. Biotechnol. 16, 196–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. McBurney, M.W. P19 embryonal carcinoma cells. Int. J. Dev. Biol. 37, 135–140 (1993).

    CAS  PubMed  Google Scholar 

  19. Murry, C.E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Balsam, L.B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Nygren, J.M. et al. Bone marrow–derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Beltramin, A.P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  Google Scholar 

  23. Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 100, 12313–12318 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cai, C.-L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell 5, 877–889 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takahashi, T. et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107, 1912–1916 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Wu, X., Ding, S., Ding, Q., Gray, N.S. & Schultz, P.G. Small molecules that induce cardiomyogenesis in embryonic stem cells. J. Am. Chem. Soc. 126, 1590–1591 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Xu, C., Police, S., Rao, N. & Carpenter, M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Hori, Y. et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 16105–16110 (2003).

    Article  Google Scholar 

  31. Drucker, D. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol. Endocrinol. 17, 161–171 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Giannoukakis, N. Exenatide Amylin/Eli Lilly. Curr. Opin. Investig. Drugs 4, 459–465 (2003). (For comprehensive and updated reviews on glucagon-like peptides, go to http://www.glucagon.com.)

    CAS  PubMed  Google Scholar 

  33. Ying, Q.L., Nichols, J., Chambers, I. & Smith, A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Dennis, J.E. & Caplan, A.I. Bone marrow mesenchymal stem cells. in Stem Cells Handbook (ed. Sell, S.) 107–117 (Humana Press Inc., Totowa, NJ, 2004).

    Google Scholar 

  36. Jaiswal, N., Haynesworth, S.E., Caplan, A.I. & Bruder, S.P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64, 295–312 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Grigoriadis, A.E., Heersche, J.N. & Aubin, J.E. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J. Cell Biol. 106, 2139–2151 (1988).

    Article  CAS  PubMed  Google Scholar 

  38. Wu, X., Ding, S., Ding, Q., Gray, N.S. & Schultz, P.G. A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J. Am. Chem. Soc. 124, 14520–14521 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Gage, F.H. Neurogenesis in the adult brain. J. Neurosci. 22, 612–613 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gabay, L., Lowell, S., Rubin, L.L. & Anderson, D.J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Berman, D.M. et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559–1561 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Pardal, R., Clarke, M.F. & Morrison, S.J. Applying the principles of stem-cell biology to cancer. Nat. Rev. Cancer 3, 895–902 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Palmer, T.D., Takahashi, J. & Gage, F.H. The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 8, 389–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Brockes, J.P. Amphibian limb regeneration: rebuilding a complex structure. Science 276, 81–87 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Terada, N. et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416, 542–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Ying, Q.-L, Nichols, J., Evans, E.P. & Smith, A.G. Changing potency by spontaneous fusion. Nature 416, 545–548 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Vassilopoulos, G., Wang, P.R. & Russell, D.W. Transplanted bone marrow regenerates liver by cell fusion. Nature 422, 901–904 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422, 897–901 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Weimann, J.M., Johansson, C.B., Trejo, A. & Blau, H.M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5, 959–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Jang, Y.-Y., Collector, M.I., Baylin, S.B., Mae Diehl, A. & Sharkis, S.J. Hematopoietic stem cells convert into liver cells within days without fusion. Nat. Cell Biol. 6, 532–539 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Lanza, R.P. et al. Generation of histocompatible tissues using nuclear transplantation. Nat. Biotechnol. 20, 665–666 (2002).

    Article  Google Scholar 

  55. Eggan, K. et al. Mice cloned from olfactory sensory neurons. Nature 428, 44–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Håkelien, A.-M. et al. Reprogramming fibroblasts to express T-cell functions using cell extracts. Nat. Biotechnol. 20, 460–466 (2002).

    Article  PubMed  Google Scholar 

  57. Zhang, Z., Yuan, X.M., Li, L.H. & Xie, F.P. Transdifferentiation in neoplastic development and its pathological implication. Histol. Histopathol. 16, 1249–1262 (2001).

    CAS  PubMed  Google Scholar 

  58. Odelberg, S.J., Kollhoff, A. & Keating, M.T. Dedifferentiation of mammalian myotubes induced by msx1. Cell 103, 1099–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. McGann, C.J., Odelberg, S.J. & Keating, M.T. Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc. Natl. Acad. Sci. USA 98, 13699–13704 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rosania, G.R. et al. Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat. Biotechnol. 18, 304–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Chen, S., Zhang, Q., Wu, X., Schultz, P.G. & Ding, S. Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc. 126, 410–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Shen, C.-N., Slack, J.M.W. & Tosh, D. Molecular basis of transdifferentiation of pancreas to liver. Nat. Cell Biol. 2, 879–887 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Skillington, J., Choy, L. & Derynck, R. Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J. Cell Biol. 159, 135–146 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Ding or Peter G Schultz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, S., Schultz, P. A role for chemistry in stem cell biology. Nat Biotechnol 22, 833–840 (2004). https://doi.org/10.1038/nbt987

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing