Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Shortcuts to making cardiomyocytes

The adult human heart lacks sufficient regenerative capacity to recover after a myocardial infarction. Cell-based therapy has emerged as a potential treatment for the failing heart; however, a key issue for the success of future cell-based therapies is the ability to obtain patient-specific high-quality cardiomyocytes in a fast and efficient manner. Recent progress has been made towards this goal using reprogramming-based approaches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential strategies to obtain exogenous cardiac cells for cell-based therapy.

References

  1. Laflamme, M. A. & Murry, C. E. Nat. Biotechnol. 23, 845–856 (2005).

    Article  CAS  Google Scholar 

  2. Hansson, E. M., Lindsay, M. E. & Chien, K. R. Cell Stem Cell 5, 364–377 (2009).

    Article  CAS  Google Scholar 

  3. Yi, B. A., Wernet, O. & Chien, K. R. J. Clin. Invest. 120, 20–28 (2010).

    Article  CAS  Google Scholar 

  4. Efe, J. A. et al. Nat. Cell Biol. 13, 215–222 (2011).

    Article  CAS  Google Scholar 

  5. Laflamme, M. A., Zbinden, S., Epstein, S. E. & Murry, C. E. Annu. Rev. Pathol. 2, 307–339 (2007).

    Article  CAS  Google Scholar 

  6. Yoshida, Y. & Yamanaka, S. J. Mol. Cell. Cardiol. 50, 327–332 (2011).

    Article  CAS  Google Scholar 

  7. Takahashi, K. & Yamanaka, S. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  8. Domian, I. J. et al. Science 326, 426–429 (2009).

    Article  CAS  Google Scholar 

  9. Qyang, Y. et al. Cell Stem Cell 1, 165–179 (2007).

    Article  CAS  Google Scholar 

  10. Moretti, A. et al. Cell 127, 1151–1165 (2006).

    Article  CAS  Google Scholar 

  11. Bu, L. et al. Nature 460, 113–117 (2009).

    Article  CAS  Google Scholar 

  12. Martin-Puig, S., Wang, Z. & Chien, K. R. Cell Stem Cell 2, 320–331 (2008).

    Article  CAS  Google Scholar 

  13. Braam, S. R., Passier, R. & Mummery, C. L. Trends Pharmacol. Sci. 30, 536–545 (2009).

    Article  CAS  Google Scholar 

  14. Szabo, E. et al. Nature 468, 521–526 (2010).

    Article  CAS  Google Scholar 

  15. Ieda, M. et al. Cell 142, 375–386 (2010).

    Article  CAS  Google Scholar 

  16. Laugwitz, K. L. et al. Nature 433, 647–653 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Yi, B. & Chien, K. Shortcuts to making cardiomyocytes. Nat Cell Biol 13, 191–193 (2011). https://doi.org/10.1038/ncb0311-191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0311-191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing