Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Secretory trafficking in neuronal dendrites

Abstract

The neuronal secretory pathway represents the intracellular route for proteins involved in synaptic transmission and plasticity, as well as lipids required for outgrowth and remodelling of dendrites and axons. Although neurons use the same secretory compartments as other eukaryotic cells, the enormous distances involved, as well as the unique morphology of the neuron and its signalling requirements, challenge canonical models of secretory pathway organization. Here, we review evidence for a distributed secretory pathway in neurons, suggest mechanisms that may regulate secretory compartment distribution, and discuss the implications of a distributed secretory pathway for neuronal morphogenesis and neural-circuit plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurons have an immense and complex plasma membrane.
Figure 2: Secretory pathway components.
Figure 3: ER exit sites are distributed throughout neuronal and non-neuronal cells.
Figure 4: Neurons have both somatic and dendritic Golgi.
Figure 5: Examples of Golgi biogenesis and dispersal.
Figure 6

Similar content being viewed by others

References

  1. Golgi, C. Intorno alla struttura delle cellule nervose. Boll. Soc. Med. Chir. Pav. 13, 3–16 (1898).

    Google Scholar 

  2. Steward, O. & Schuman, E.M. Compartmentalized synthesis and degradation of proteins in neurons. Neuron 40, 347–359 (2003).

    CAS  PubMed  Google Scholar 

  3. Job, C. & Eberwine, J. Localization and translation of mRNA in dendrites and axons. Nature Rev. Neurosci. 2, 889–898 (2001).

    CAS  Google Scholar 

  4. Deutsch, C. The birth of a channel. Neuron 40, 265–276 (2003).

    CAS  PubMed  Google Scholar 

  5. Bichet, D. et al. The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 25, 177–190 (2000).

    CAS  PubMed  Google Scholar 

  6. Margeta-Mitrovic, M., Jan, Y.N. & Jan, L.Y. A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27, 97–106 (2000).

    CAS  PubMed  Google Scholar 

  7. Standley, S., Roche, K.W., McCallum, J., Sans, N. & Wenthold, R.J. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 28, 887–898 (2000).

    CAS  PubMed  Google Scholar 

  8. Scott, D.B., Blanpied, T.A., Swanson, G.T., Zhang, C. & Ehlers, M.D. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci. 21, 3063–3072 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mu, Y., Otsuka, T., Horton, A.C., Scott, D.B. & Ehlers, M.D. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron 40, 581–594 (2003).

    CAS  PubMed  Google Scholar 

  10. Ma, D. et al. Role of ER export signals in controlling surface potassium channel numbers. Science 291, 316–319 (2001).

    CAS  PubMed  Google Scholar 

  11. Barlowe, C. COPII-dependent transport from the endoplasmic reticulum. Curr. Opin. Cell Biol. 14, 417–422 (2002).

    CAS  PubMed  Google Scholar 

  12. Hammond, A.T. & Glick, B.S. Dynamics of transitional endoplasmic reticulum sites in vertebrate cells. Mol. Biol. Cell 11, 3013–3030 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stephens, D.J., Lin-Marq, N., Pagano, A., Pepperkok, R. & Paccaud, J.P. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. J. Cell Sci. 113, 2177–2185 (2000).

    CAS  PubMed  Google Scholar 

  14. Horton, A.C. & Ehlers, M.D. Dual modes of endoplasmic-reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J. Neurosci. 23, 6188–6199 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Aridor, M., Guzik, A.K., Bielli, A. & Fish, K.N. Endoplasmic reticulum export site formation and function in dendrites. J. Neurosci. 24, 3770–3776 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pelletier, L., Jokitalo, E. & Warren, G. The effect of Golgi depletion on exocytic transport. Nature Cell Biol. 2, 840–846 (2000).

    CAS  PubMed  Google Scholar 

  17. Gardiol, A., Racca, C. & Triller, A. Dendritic and postsynaptic protein synthetic machinery. J. Neurosci. 19, 168–179 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pierce, J.P., Mayer, T. & McCarthy, J.B. Evidence for a satellite secretory pathway in neuronal dendritic spines. Curr. Biol. 11, 351–355 (2001).

    CAS  PubMed  Google Scholar 

  19. Torre, E.R. & Steward, O. Protein synthesis within dendrites: glycosylation of newly synthesized proteins in dendrites of hippocampal neurons in culture. J. Neurosci. 16, 5967–5978 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kacharmina, J.E., Job, C., Crino, P. & Eberwine, J. Stimulation of glutamate receptor protein synthesis and membrane insertion within isolated neuronal dendrites. Proc. Natl Acad. Sci. USA 97, 11545–11550 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ju, W. et al. Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nature Neurosci. 8, 8 (2004).

    Google Scholar 

  22. Sheffield, H.G. & Bjorvat, B. Ultrastructure of the cyst of Giardia lamblia. Am. J. Trop. Med. Hyg. 26, 23–30 (1977).

    CAS  PubMed  Google Scholar 

  23. Reiner, D.S., Douglas, H. & Gillin, F.D. Identification and localization of cyst-specific antigens of Giardia lamblia. Infect. Immun. 57, 963–968 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lujan, H.D. et al. Developmental induction of Golgi structure and function in the primitive eukaryote Giardia lamblia. J. Biol. Chem. 270, 4612–4618 (1995).

    CAS  PubMed  Google Scholar 

  25. Pelletier, L. et al. Golgi biogenesis in Toxoplasma gondii. Nature 418, 548–552 (2002).

    CAS  PubMed  Google Scholar 

  26. Lucocq, J.M., Warren, G. Fragmentation and partitioning of the Golgi apparatus during mitosis in HeLa cells. EMBO J. 6, 3239–3246 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lucocq, J.M., Berger, E.G. & Warren, G. Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway. J. Cell Biol. 109, 463–474 (1989).

    CAS  PubMed  Google Scholar 

  28. Seemann, J., Pypaert, M., Taguchi, T., Malsam, J. & Warren, G. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 295, 848–851 (2002).

    CAS  PubMed  Google Scholar 

  29. Shima, D.T., Cabrera-Poch, N., Pepperkok, R. & Warren, G. An ordered inheritance strategy for the Golgi apparatus: visualization of mitotic disassembly reveals a role for the mitotic spindle. J. Cell Biol. 141, 955–966 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Souter, E., Pypaert, M. & Warren, G. The Golgi stack reassembles during telophase before arrival of proteins transported from the endoplasmic reticulum. J. Cell Biol. 122, 533–540 (1993).

    CAS  PubMed  Google Scholar 

  31. Lowe, M., Gonatas, N.K. & Warren, G. The mitotic phosphorylation cycle of the cis-Golgi matrix protein GM130. J. Cell Biol. 149, 341–356 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fath, K.R., Trimbur, G.M. & Burgess, D.R. Molecular motors and a spectrin matrix associate with Golgi membranes in vitro. J. Cell Biol. 139, 1169–1181 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Seemann, J., Jokitalo, E., Pypaert, M. & Warren, G. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407, 1022–1026 (2000).

    CAS  PubMed  Google Scholar 

  34. Lippincott-Schwartz, J., Yuan, L.C., Bonifacino, J.S. & Klausner, R.D. Rapid redistribution of Golgi proteins into the ER in cells treated with brefeldin A: evidence for membrane cycling from Golgi to ER. Cell 56, 801–813 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cole, N.B., Ellenberg, J., Song, J., DiEuliis, D. & Lippincott-Schwartz, J. Retrograde transport of Golgi-localized proteins to the ER. J. Cell Biol. 140, 1–15 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lippincott-Schwartz, J., Roberts, T.H. & Hirschberg, K. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557–589 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Rossanese, O.W. et al. Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J. Cell Biol. 145, 69–81 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Thyberg, J. & Moskalewski, S. Role of microtubules in the organization of the Golgi complex. Exp. Cell Res. 246, 263–279 (1999).

    CAS  PubMed  Google Scholar 

  39. Rogalski, A.A., Bergmann, J.E. & Singer, S.J. Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane. J. Cell Biol. 99, 1101–1109 (1984).

    CAS  PubMed  Google Scholar 

  40. Ho, W.C., Allan, V.J., van Meer, G., Berger, E.G. & Kreis, T.E. Reclustering of scattered Golgi elements occurs along microtubules. Eur. J. Cell Biol. 48, 250–263 (1989).

    CAS  PubMed  Google Scholar 

  41. Burkhardt, J.K., Echeverri, C.J., Nilsson, T. & Vallee, R.B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vaisberg, E.A., Grissom, P.M. & McIntosh, J.R. Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J. Cell Biol. 133, 831–842 (1996).

    CAS  PubMed  Google Scholar 

  43. Kupfer, A., Louvard, D. & Singer, S.J. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc. Natl Acad. Sci. USA 79, 2603–2607 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Etienne-Manneville, S. & Hall, A. Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003).

    CAS  PubMed  Google Scholar 

  45. Baas, P.W., Deitch, J.S., Black, M.M. & Banker, G.A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl Acad. Sci. USA 85, 8335–8339 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharp, D.J., Yu, W. & Baas, P.W. Transport of dendritic microtubules establishes their nonuniform polarity orientation. J. Cell Biol. 130, 93–103 (1995).

    CAS  PubMed  Google Scholar 

  47. Burack, M.A., Silverman, M.A. & Banker, G. The role of selective transport in neuronal protein sorting. Neuron 26, 465–472 (2000).

    CAS  PubMed  Google Scholar 

  48. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    CAS  PubMed  Google Scholar 

  49. Fath, K.R., Trimbur, G.M. & Burgess, D.R. Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells. J. Cell Biol. 126, 661–675 (1994).

    CAS  PubMed  Google Scholar 

  50. Musch, A., Cohen, D. & Rodriguez-Boulan, E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J. Cell Biol. 138, 291–306 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Buss, F. et al. The localization of myosin VI at the golgi complex and leading edge of fibroblasts and its phosphorylation and recruitment into membrane ruffles of A431 cells after growth factor stimulation. J. Cell Biol. 143, 1535–1545 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnston, G.C., Prendergast, J.A. & Singer, R.A. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J. Cell Biol. 113, 539–551 (1991).

    CAS  PubMed  Google Scholar 

  53. Camera, P. et al. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nature Cell Biol. 5, 1071–1078 (2003).

    CAS  PubMed  Google Scholar 

  54. Echard, A. et al. Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279, 580–585 (1998).

    CAS  PubMed  Google Scholar 

  55. Harada, A. et al. Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J. Cell. Biol. 141, 51–59 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ghosh, P., Griffith, J., Geuze, H.J. & Kornfeld, S. Mammalian GGAs act together to sort mannose 6-phosphate receptors. J. Cell Biol. 163, 755–766 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu, Y. et al. Role of KIFC3 motor protein in Golgi positioning and integration. J. Cell Biol. 158, 293–303 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Martinez-Arca, S. et al. A common exocytotic mechanism mediates axonal and dendritic outgrowth. J. Neurosci. 21, 3830–3838 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zakharenko, S., Popov, S. Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143, 1077–1086 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Buck, K.B., Zheng, J.Q. Growth cone turning induced by direct local modification of microtubule dynamics. J. Neurosci. 22, 9358–9367 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. da Silva, J.S. & Dotti, C.G. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nature Rev. Neurosci. 3, 694–704 (2002).

    CAS  Google Scholar 

  62. Luo, L. Rho GTPases in neuronal morphogenesis. Nature Rev. Neurosci. 1, 173–180 (2000).

    CAS  Google Scholar 

  63. Dehmelt, L. & Halpain, S. Actin and microtubules in neurite initiation: are MAPs the missing link? J. Neurobiol. 58, 18–33 (2004).

    CAS  PubMed  Google Scholar 

  64. Grueber, W.B., Jan, L.Y., Jan, Y.N. Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112, 805–818 (2003).

    CAS  PubMed  Google Scholar 

  65. Gao, F.B., Brenman, J.E., Jan, L.Y. & Jan, Y.N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 13, 2549–2561 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Finger, F.P. & Novick, P. Spatial regulation of exocytosis: lessons from yeast. J. Cell Biol. 142, 609–612 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kupfer, A., Dennert, G. & Singer, S.J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc. Natl Acad. Sci. USA 80, 7224–7228 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kupfer, A., Dennert, G. & Singer, S.J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. J. Mol. Cell. Immunol. 2, 37–49 (1985).

    CAS  PubMed  Google Scholar 

  69. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cells polarity in migrating astrocytes through PKCζ. Cell 106 489–498 (2001).

    CAS  PubMed  Google Scholar 

  70. Golgi, C. Di una minuta particolarità di struttura dell'epitelio della mucosa gastrica ed intestinale di alcuni vertebrati. Boll. Soc. Med. Chir. Pav. 24, 1–22 (1909).

    Google Scholar 

  71. Hausser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    CAS  PubMed  Google Scholar 

  72. Blanpied, T.A., Scott, D.B. & Ehlers, M.D. Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36, 435–449 (2002).

    CAS  PubMed  Google Scholar 

  73. Garner, C.C., Zhai, R.G., Gundelfinger, E.D. & Ziv, N.E. Molecular mechanisms of CNS synaptogenesis. Trends Neurosci. 25, 243–251 (2002).

    CAS  PubMed  Google Scholar 

  74. Nakata, T., Terada, S. & Hirokawa, N. Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J. Cell Biol. 140, 659–674 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Ahmari, S.E., Buchanan, J. & Smith, S.J. Assembly of presynaptic active zones from cytoplasmic transport packets. Nature Neurosci. 3, 445–451 (2000).

    CAS  PubMed  Google Scholar 

  76. Zhai, R.G. et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29, 131–143 (2001).

    CAS  PubMed  Google Scholar 

  77. Friedman, H.V., Bresler, T., Garner, C.C. & Ziv, N.E. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment. Neuron 27, 57–69 (2000).

    CAS  PubMed  Google Scholar 

  78. Washbourne, P., Bennett, J.E. & McAllister, A.K. Rapid recruitment of NMDA receptor transport packets to nascent synapses. Nature Neurosci. 5, 751–759 (2002).

    CAS  PubMed  Google Scholar 

  79. Bresler, T. et al. Postsynaptic density assembly is fundamentally different from presynaptic active zone assembly. J. Neurosci. 24, 1507–1520 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Choquet, D. & Triller, A. The role of receptor diffusion in the organization of the postsynaptic membrane. Nature Rev. Neurosci. 4, 251–265 (2003).

    CAS  Google Scholar 

  81. Li, Z. & Sheng, M. Some assembly required: the development of neuronal synapses. Nature Rev. Mol. Cell Biol. 4, 833–841 (2003).

    CAS  Google Scholar 

  82. Setou, M., Nakagawa, T., Seog, D.H. & Hirokawa, N. Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science 288, 1796–1802 (2000).

    CAS  PubMed  Google Scholar 

  83. Chetkovich, D.M. et al. Postsynaptic targeting of alternative postsynaptic density-95 isoforms by distinct mechanisms. J. Neurosci. 22, 6415–6425 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Murthy, M., Garza, D., Scheller, R.H. & Schwarz, T.L. Mutations in the exocyst component sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433–447 (2003).

    CAS  PubMed  Google Scholar 

  85. Sans, N. et al. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nature Cell Biol. 5, 520–530 (2003).

    CAS  PubMed  Google Scholar 

  86. Sytnyk, V. et al. Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts. J. Cell Biol. 159, 649–661 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Maletic-Savatic, M., Koothan, T. & Malinow, R. Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part II: mediation by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 18, 6814–6821 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Maletic-Savatic, M. & Malinow, R. Calcium-evoked dendritic exocytosis in cultured hippocampal neurons. Part I: trans-Golgi network-derived organelles undergo regulated exocytosis. J. Neurosci 18, 6803–6813 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Liao, D., Hessler, N.A. & Malinow, R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375, 400–404 (1995).

    CAS  PubMed  Google Scholar 

  90. Shi, S.H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816 (1999).

    CAS  PubMed  Google Scholar 

  91. Lu, W. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001).

    CAS  PubMed  Google Scholar 

  92. Passafaro, M., Piech, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nature Neurosci. 4, 917–926 (2001).

    CAS  PubMed  Google Scholar 

  93. Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262–2267 (2000).

    CAS  PubMed  Google Scholar 

  94. Broutman, G. & Baudry, M. Involvement of the secretory pathway for AMPA receptors in NMDA-induced potentiation in hippocampus. J. Neurosci. 21, 27–34 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Cho, K., Aggleton, J.P., Brown, M.W. & Bashir, Z.I. An experimental test of the role of postsynaptic calcium levels in determining synaptic strength using perirhinal cortex of rat. J. Physiol. 532, 459–466 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Forloni, G. et al. Protein misfolding in Alzheimer's and Parkinson's disease: genetics and molecular mechanisms. Neurobiol. Aging 23, 957–976 (2002).

    CAS  PubMed  Google Scholar 

  97. Kamenetz, F. et al. APP processing and synaptic function. Neuron 37, 925–937 (2003).

    CAS  PubMed  Google Scholar 

  98. De Strooper, B. Aph-1, Pen-2, and Nicastrin with Presenilin generate an active γ-Secretase complex. Neuron 38, 9–12 (2003).

    CAS  PubMed  Google Scholar 

  99. Sisodia, S.S. & St George-Hyslop, P.H. γ-Secretase, Notch, Aβ and Alzheimer's disease: where do the presenilins fit in? Nature Rev. Neurosci. 3 281–290 (2002).

    CAS  Google Scholar 

  100. Ramon y Cajal, S. Histologie du Système Nerveux de l'Homme & des Vertébrés. (Maloine, Paris; 1911).

    Google Scholar 

  101. Prigozhina, N.L. & Waterman-Storer, C.M. Protein kinase D-mediated anterograde membrane trafficking is required for fibroblast motility. Curr. Biol. 14 88–98 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the reviewers, as well as T. Blanpied, D. Gitler, J. Hernandez, A. Mizrahi, F. Wang, and J. Welch, for critical comments and suggestions. In addition, we apologize to those whose work we did not cite because of space limitations. Work from the laboratory of M.D.E. is supported by the National Institutes of Health (NS39402 and MH64748), the Christopher Reeve Paralysis Foundation, and the Ruth K. Broad Biomedical Research Foundation. A.C.H. is also supported by the Gertrude Elion Award from the Triangle Community Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Ehlers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horton, A., Ehlers, M. Secretory trafficking in neuronal dendrites. Nat Cell Biol 6, 585–591 (2004). https://doi.org/10.1038/ncb0704-585

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0704-585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing