Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy in mammalian development and differentiation

Abstract

It has been known for many decades that autophagy, a conserved lysosomal degradation pathway, is highly active during differentiation and development. However, until the discovery of the autophagy-related (ATG) genes in the 1990s, the functional significance of this activity was unknown. Initially, genetic knockout studies of ATG genes in lower eukaryotes revealed an essential role for the autophagy pathway in differentiation and development. In recent years, the analyses of systemic and tissue-specific knockout models of ATG genes in mice has led to an explosion of knowledge about the functions of autophagy in mammalian development and differentiation. Here we review the main advances in our understanding of these functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative images of the induction of autophagy and the outcome of its suppression.
Figure 2: The role of autophagy in development and differentiation in mammals.

Similar content being viewed by others

References

  1. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007).

    CAS  PubMed  Google Scholar 

  2. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Rubinsztein, D. C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786 (2006).

    CAS  PubMed  Google Scholar 

  4. Mizushima, N. & Klionsky, D. J. Protein turnover via autophagy: implications for metabolism. Annu. Rev. Nutr. 27, 19–40 (2007).

    CAS  PubMed  Google Scholar 

  5. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cecconi, F. & Levine, B. The role of autophagy in mammalian development: cell makeover rather than cell death. Dev. Cell 15, 344–357 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Virgin, H. W. & Levine, B. Autophagy genes in immunity. Nat. Immunol. 10, 461–470 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Deretic, V. & Levine, B. Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5, 527–549 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. White, E., Karp, C., Strohecker, A. M., Guo, Y. & Mathew, R. Role of autophagy in suppression of inflammation and cancer. Curr. Opin. Cell Biol. 22, 212–217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y. et al. SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell 136, 308–321 (2009).

    CAS  PubMed  Google Scholar 

  11. Tsukamoto, S. et al. Autophagy is essential for preimplantation development of mouse embryos. Science 321, 117–120 (2008).

    CAS  PubMed  Google Scholar 

  12. Merz, E. A., Brinster, R. L., Brunner, S. & Chen, H. Y. Protein degradation during preimplantation development of the mouse. J. Reprod. Fertil. 61, 415–418 (1981).

    CAS  PubMed  Google Scholar 

  13. Stitzel, M. L. & Seydoux, G. Regulation of the oocyte-to-zygote transition. Science 316, 407–408 (2007).

    CAS  PubMed  Google Scholar 

  14. van Blerkom, J. & Brockway, G. O. Qualitative patterns of protein synthesis in the preimplantation mouse embryo. I. Normal pregnancy. Dev. Biol. 44, 148–157 (1975).

    CAS  PubMed  Google Scholar 

  15. Schier, A. F. The maternal-zygotic transition: death and birth of RNAs. Science 316, 406–407 (2007).

    CAS  PubMed  Google Scholar 

  16. Eskelinen, E.-L. et al. Inhibition of autophagy in mitotic animal cells. Traffic 3, 878–893 (2002).

    CAS  PubMed  Google Scholar 

  17. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    CAS  PubMed  Google Scholar 

  18. Sou, Y. S. et al. The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. Mol. Biol. Cell 19, 4762–4775 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425–434 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    CAS  PubMed  Google Scholar 

  22. Kotoulas, O. B., Kalamidas, S. A. & Kondomerkos, D. J. Glycogen autophagy in glucose homeostasis. Pathol. Res. Pract. 202, 631–638 (2006).

    CAS  PubMed  Google Scholar 

  23. Schiaffino, S., Mammucari, C. & Sandri, M. The role of autophagy in neonatal tissues: just a response to amino acid starvation? Autophagy 4, 727–730 (2008).

    CAS  PubMed  Google Scholar 

  24. Baerga, R., Zhang, Y., Chen, P. H., Goldman, S. & Jin, S. Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5, 1118–1130 (2009).

    CAS  PubMed  Google Scholar 

  25. Qu, X. et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 128, 931–946 (2007).

    CAS  PubMed  Google Scholar 

  26. Mizushima, N., Yamamoto, A., Matsui, M., Yoshimori, T. & Ohsumi, Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol. Biol. Cell 15, 1101–1111 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. He, C. & Levine, B. The Beclin 1 interactome. Curr. Opin. Cell Biol. 22, 140–149 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yue, Z., Jin, S., Yang, C., Levine, A. J. & Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl Acad. Sci. USA 100, 15077–15082 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fimia, G. M. et al. Ambra1 regulates autophagy and development of the nervous system. Nature 447, 1121–1125 (2007).

    CAS  PubMed  Google Scholar 

  31. Hara, T. et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497–510 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gan, B. et al. Role of FIP200 in cardiac and liver development and its regulation of TNFα and TSC–mTOR signaling pathways. J. Cell Biol. 175, 121–133 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Longatti, A. & Tooze, S. A. Vesicular trafficking and autophagosome formation. Cell Death Differ. 16, 956–965 (2009).

    CAS  PubMed  Google Scholar 

  34. Nishida, Y. et al. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki, K., Kubota, Y., Sekito, T. & Ohsumi, Y. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12, 209–218 (2007).

    CAS  PubMed  Google Scholar 

  36. van Leyen, K., Duvoisin, R. M., Engelhardt, H. & Wiedmann, M. A function for lipoxygenase in programmed organelle degradation. Nature 395, 392–395 (1998).

    CAS  PubMed  Google Scholar 

  37. Grullich, C., Duvoisin, R. M., Wiedmann, M. & van Leyen, K. Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Lett. 489, 51–54 (2001).

    CAS  PubMed  Google Scholar 

  38. Vijayvergiya, C. et al. High-level expression of rabbit 15-lipoxygenase induces collapse of the mitochondrial pH gradient in cell culture. Biochemistry 43, 15296–15302 (2004).

    CAS  PubMed  Google Scholar 

  39. Tooze, J. & Davies, H. G. Cytolysosomes in amphibian erythrocytes. J. Cell Biol. 24, 146–150 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kent, G., Minick, O. T., Volini, F. I. & Orfei, E. Autophagic vacuoles in human red cells. Am. J. Pathol. 48, 831–857 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gronowicz, G., Swift, H. & Steck, T. L. Maturation of the reticulocyte in vitro. J. Cell Sci. 71, 177–197 (1984).

    CAS  PubMed  Google Scholar 

  42. Heynen, M. J., Tricot, G. & Verwilghen, R. L. Autophagy of mitochondria in rat bone marrow erythroid cells. Relation to nuclear extrusion. Cell Tissue Res. 239, 235–239 (1985).

    CAS  PubMed  Google Scholar 

  43. Takano-Ohmuro, H., Mukaida, M., Kominami, E. & Morioka, K. Autophagy in embryonic erythroid cells: its role in maturation. Eur. J. Cell Biol. 79, 759–764 (2000).

    CAS  PubMed  Google Scholar 

  44. Matsui, M., Yamamoto, A., Kuma, A., Ohsumi, Y. & Mizushima, N. Organelle degradation during the lens and erythroid differentiation is independent of autophagy. Biochem. Biophys. Res. Commun. 339, 485–489 (2006).

    CAS  PubMed  Google Scholar 

  45. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010).

    CAS  PubMed  Google Scholar 

  48. Diwan, A. et al. Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc. Natl Acad. Sci. USA 104, 6794–6799 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chan, E. Y. W. & Tooze, S. A. Evolution of Atg1 function and regulation. Autophagy 5, 758–765 (2009).

    CAS  PubMed  Google Scholar 

  50. Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol. 22, 132–139 (2010).

    CAS  PubMed  Google Scholar 

  51. Kundu, M. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, J. et al. Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114, 157–164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mortensen, M. et al. Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. Proc. Natl Acad. Sci. USA 107, 832–837 (2010).

    CAS  PubMed  Google Scholar 

  54. Schwarten, M. et al. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 5, 690–698 (2009).

    CAS  PubMed  Google Scholar 

  55. Pua, H. H., Guo, J., Komatsu, M. & He, Y. W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol. 182, 4046–4055 (2009).

    CAS  PubMed  Google Scholar 

  56. Stephenson, L. M. et al. Identification of Atg5-dependent transcriptional changes and increases in mitochondrial mass in Atg5-deficient T lymphocytes. Autophagy 5, 625–635 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y. W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Exp. Med. 204, 25–31 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nedjic, J., Aichinger, M., Emmerich, J., Mizushima, N. & Klein, L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455, 396–400 (2008).

    CAS  PubMed  Google Scholar 

  59. Miller, B. C. et al. The autophagy gene ATG5 plays an essential role in B lymphocyte development. Autophagy 4, 309–314 (2008).

    CAS  PubMed  Google Scholar 

  60. Singh, R. et al. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329–3339 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shibata, M. et al. LC3, a microtubule-associated protein1A/B light chain3, is involved in cytoplasmic lipid droplet formation. Biochem. Biophys. Res. Commun. 393, 274–279 (2010).

    CAS  PubMed  Google Scholar 

  62. Zhang, Y. et al. Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc. Natl Acad. Sci. USA 106, 19860–19865 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    CAS  PubMed  Google Scholar 

  65. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    CAS  PubMed  Google Scholar 

  66. Gesta, S., Tseng, Y. H. & Kahn, C. R. Developmental origin of fat: tracking obesity to its source. Cell 131, 242–256 (2007).

    CAS  PubMed  Google Scholar 

  67. Shibata, M. et al. The MAP1–LC3 conjugation system is involved in lipid droplet formation. Biochem. Biophys. Res. Commun. 382, 419–423 (2009).

    CAS  PubMed  Google Scholar 

  68. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kuma, A., Matsui, M. & Mizushima, N. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. Autophagy 3, 323–328 (2007).

    CAS  PubMed  Google Scholar 

  70. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    CAS  PubMed  Google Scholar 

  71. Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880–884 (2006).

    CAS  PubMed  Google Scholar 

  72. Liang, C. C., Wang, C., Peng, X., Gan, B. & Guan, J. L. Neural specific deletion of FIP200 leads to cerebellar degeneration caused by increased neuronal death and axon degeneration. J. Biol. Chem. 285, 3499–3509 (2010).

    CAS  PubMed  Google Scholar 

  73. Nakai, A. et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 13, 619–624 (2007).

    CAS  PubMed  Google Scholar 

  74. Raben, N. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet. 17, 3897–3908 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab. 10, 507–515 (2009).

    CAS  PubMed  Google Scholar 

  76. Ebato, C. et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325–332 (2008).

    CAS  PubMed  Google Scholar 

  77. Jung, H. S. et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8, 318–324 (2008).

    CAS  PubMed  Google Scholar 

  78. Hartleben, B. et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J. Clin. Invest. 120, 1084–1096 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bjørkøy, G. et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614 (2005).

    PubMed  PubMed Central  Google Scholar 

  80. Komatsu, M. et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149–1163 (2007).

    CAS  PubMed  Google Scholar 

  81. Komatsu, M. et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213–223 (2010).

    CAS  PubMed  Google Scholar 

  82. Lau, A. et al. A non-canonical mechanism of Nrf2 activation by autophagy deficiency: a direct interaction between Keap1 and p62. Mol. Cell. Biol. 30, 3275–3285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Jain, A. et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element–driven gene transcription. J. Biol. Chem. 285, 22576–22591 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Copple, I. M. et al. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1–Nrf2 cell defence pathway. J. Biol. Chem. 285, 16782–16788 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    CAS  PubMed  Google Scholar 

  86. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378–383 (2010).

    CAS  PubMed  Google Scholar 

  88. Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010).

    CAS  PubMed  Google Scholar 

  89. Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    PubMed  PubMed Central  Google Scholar 

  90. Kawajiri, S. et al. PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett. 584, 1073–1079 (2010).

    CAS  PubMed  Google Scholar 

  91. Ziviani, E., Tao, R. N. & Whitworth, A. J. Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl Acad. Sci. USA 107, 5018–5023 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Matsuda, N. et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189, 211–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsukada, M. & Ohsumi, Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169–174 (1993).

    CAS  PubMed  Google Scholar 

  94. Kohda, T. A. et al. Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes. Genes Cells 12, 155–170 (2007).

    CAS  PubMed  Google Scholar 

  95. Mukaiyama, H. et al. Autophagy-deficient Schizosaccharomyces pombe mutants undergo partial sporulation during nitrogen starvation. Microbiology 155, 3816–3826 (2009).

    CAS  PubMed  Google Scholar 

  96. Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R. & Kessin, R. H. Macroautophagy is required for multicellular development of the social amoeba Dictyostelium discoideum. J. Biol. Chem. 278, 17636–17645 (2003).

    CAS  PubMed  Google Scholar 

  97. Otto, G. P., Wu, M. Y., Kazgan, N., Anderson, O. R. & Kessin, R. H. Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J. Biol. Chem. 279, 15621–15629 (2004).

    CAS  PubMed  Google Scholar 

  98. Nolting, N., Bernhards, Y. & Poggeler, S. SmATG7 is required for viability in the homothallic ascomycete Sordaria macrospora. Fungal Genet. Biol. 46, 531–542 (2009).

    CAS  PubMed  Google Scholar 

  99. Pinan-Lucarre, B., Paoletti, M., Dementhon, K., Coulary-Salin, B. & Clave, C. Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol. Microbiol. 47, 321–333 (2003).

    CAS  PubMed  Google Scholar 

  100. Besteiro, S., Williams, R. A., Morrison, L. S., Coombs, G. H. & Mottram, J. C. Endosome sorting and autophagy are essential for differentiation and virulence of Leishmania major. J. Biol. Chem. 281, 11384–11396 (2006).

    CAS  PubMed  Google Scholar 

  101. Alvarez, V. E. et al. Autophagy is involved in nutritional stress response and differentiation in Trypanosoma cruzi. J. Biol. Chem. 283, 3454–3464 (2008).

    CAS  PubMed  Google Scholar 

  102. Melendez, A. et al. Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391 (2003).

    CAS  PubMed  Google Scholar 

  103. Takacs-Vellai, K. et al. Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr. Biol. 15, 1513–1517 (2005).

    CAS  PubMed  Google Scholar 

  104. Juhasz, G., Csikos, G., Sinka, R., Erdelyi, M. & Sass, M. The Drosophila homolog of Aut1 is essential for autophagy and development. FEBS Lett. 543, 154–158 (2003).

    CAS  PubMed  Google Scholar 

  105. Berry, D. L. & Baehrecke, E. H. Growth arrest and autophagy are required for salivary gland cell degradation in Drosophila. Cell 131, 1137–1148 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Denton, D. et al. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 19, 1741–1746 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Shen, W. & Ganetzky, B. Autophagy promotes synapse development in Drosophila. J. Cell Biol. 187, 71–79 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hanaoka, H. et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181–1193 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Doelling, J. H., Walker, J. M., Friedman, E. M., Thompson, A. R. & Veirstra, R. D. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J. Biol. Chem. 277, 33105–33114 (2002).

    CAS  PubMed  Google Scholar 

  110. Yoshimoto, K. et al. Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967–2983 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Juhasz, G., Erdi, B., Sass, M. & Neufeld, T. P. Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev. 21, 3061–3066 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Mariño, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in ATG4C/autophagin-3. J. Biol. Chem. 282, 18573–18583 (2007).

    PubMed  Google Scholar 

  113. Cann, G. M. et al. Developmental expression of LC3α and β: absence of fibronectin or autophagy phenotype in LC3β knockout mice. Dev. Dyn. 237, 187–195 (2007).

    Google Scholar 

  114. O'Sullivan, G. A., Kneussel, M., Elazar, Z. & Betz, H. GABARAP is not essential for GABA receptor targeting to the synapse. Eur. J. Neurosci. 22, 2644–2648 (2005).

    PubMed  Google Scholar 

  115. Komatsu, M. et al. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc. Natl Acad. Sci. USA 104, 14489–14494 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Nishiyama, J., Miura, E., Mizushima, N., Watanabe, M. & Yuzaki, M. Aberrant membranes and double-membrane structures accumulate in the axons of Atg5-null Purkinje cells before neuronal death. Autophagy 3, 591–596 (2007).

    CAS  PubMed  Google Scholar 

  117. Hashimoto, D. et al. Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells. J. Cell Biol. 181, 1065–1072 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Lee, H. K. et al. In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227–239 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chieko Kishi and Satoshi Tsukamoto for preparation of the images in Fig. 1a and Fig. 1b, respectively. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to N.M.), the Toray Science Foundation (to N.M.), the Takeda Science Foundation (to N.M.) and National Institutes of Health grants RO1 CA85254, RO1 CA109618 and U54 AI057156 (to B.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Mizushima.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizushima, N., Levine, B. Autophagy in mammalian development and differentiation. Nat Cell Biol 12, 823–830 (2010). https://doi.org/10.1038/ncb0910-823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0910-823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing