Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Discs-Large and Strabismus are functionally linked to plasma membrane formation

Abstract

During early embryogenesis in Drosophila melanogaster, extensive vesicle transport occurs to build cell boundaries for 6,000 nuclei. Here we show that this important process depends on a functional complex formed between the tumour suppressor and adaptor protein Discs-Large (Dlg)1 and the integral membrane protein Strabismus (Stbm)/Van Gogh (Vang)2,3. In support of this idea, embryos with mutations in either dlg or stbm displayed severe defects in plasma membrane formation. Conversely, overexpression of Dlg and Stbm synergistically induced excessive plasma membrane formation. In addition, ectopic co-expression of Stbm (which associated with post-Golgi vesicles) and the mammalian Dlg homologue SAP97/hDlg4,5 promoted translocation of SAP97 from the cytoplasm to both post-Golgi vesicles and the plasma membrane. This effect was dependent on the interaction between Stbm and SAP97. These findings suggest that the Dlg–Stbm complex recruits membrane-associated proteins and lipids from internal membranes to sites of new plasma membrane formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dlg interacts with Stbm.
Figure 2: Epithelial cells of stbm mutant embryos exhibit defects in membrane formation.
Figure 3: Expression pattern of Stbm and Dlg in fly and mammalian cells.
Figure 4: Dlg and Stbm must interact to colocalize and promote membrane formation.
Figure 5: Dlg is required for plasma membrane formation in both embryos and larvae.

Similar content being viewed by others

References

  1. Woods, D.F. & Bryant, P.J. The discs-large tumor suppressor gene of Drosophila encodes a guanylate kinase homolog localized at septate junctions. Cell 66, 451–464 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Wolff, T. & Rubin, G.R. strabismus, a novel gene that regulates tissue polarity and cell fate decisions in Drosophila. Development 125, 1149–1159 (1998).

    CAS  PubMed  Google Scholar 

  3. Taylor, J., Abramova, N., Charlton, J. & Adler P.N. Van Gogh: A new Drosophila tissue polarity gene. Genetics 150, 199–210 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lue, R.A., Marfatia, S.M., Branton, D. & Chishti, A.H. Cloning and characterization of hDLG: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc. Natl Acad. Sci. USA 91, 9818–9822 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Muller, B.M. et al. Molecular characterization and spatial distribution of SAP97, a novel presynaptic protein homologous to SAP90 and the Drosophila discs-large tumor suppressor protein. J. Neurosci. 15, 2354–2366 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Foe, V.E., Odell, G.M. & Edgar, B.A in The Development of Drosophila melanogaster (eds Bate, M. & Martinez-Ariaz, A.) 149–300 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1993).

    Google Scholar 

  7. Lecuit, T. & Wieschaus, E. Polarized insertion of new membrane from a cytoplasmic reservoir during cleavage of the Drosophila embryos. J. Cell Biol. 150, 849–860 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bilder, D. PDZ proteins and polarity: functions from the fly. Trends Genet. 17, 511–519 (1991).

    Article  Google Scholar 

  9. Rao, A., Kim, E., Sheng, M. & Craig, A.M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Thomas U. et al. Synaptic targeting and localization of discs-large is a stepwise process controlled by different domains of the protein. Curr. Biol. 10, 1108–1117 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. El-Husseini A.E. et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol. 148, 159–172 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sans N. et al. Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway. J. Neurosci. 21, 7506–7516 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kibar Z. et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nature Genet. 28, 251–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Jessen J.R. et al. Zebrafish trilobite identifies new roles for Strabismus in gastrulation and neuronal movements. Nature Cell Biol. 4, 610–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Mendoza, C. et al. Novel isoforms of Dlg are fundamental for neuronal development in Drosophila. J. Neurosci. 23, 2093–2101 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bhat M.A. et al. Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 96, 833–845 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Burgess, R.W., Deitcher, D.L. & Schwarz, T.L. The synaptic protein Syntaxin1 is required for cellularization of Drosophila embryos. J. Cell Biol. 138, 861–875 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chetkovich, D.M. et al. Postsynaptic targeting of alternative Postsynaptic density-95 isoforms by distinct mechanisms. J. Neurosci. 22, 6415–6425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakamura, N. et al. Characterization of a cis-Golgi matrix protein, GM130. J. Cell Biol. 131, 1715–1726 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Kondylis, V., Goulding, S.E., Dunne, J.C. & Rabouille, C. Biogenesis of Golgi stacks in imaginal discs of Drosphila melanogaster. Mol. Biol. Cell 12, 2308–2327 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stanley, H., Botas, J. & Malhotra, V. The mechanism of Golgi segregation during mitosis is cell type-specific. Proc. Natl Acad. Sci. USA 94, 14467–14470 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lucocq, J.M. & Warren, G. Fragmentation and partitioning of the Golgi apparatus during mitosis in HeLa cells. EMBO J. 6, 3239–3246 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cole, N.B. et al. Golgi dispersal during a microtubule disruption-regeneration of Golgi stacks at peripheral endoplasmic-reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baumgartner, S. et al. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell 87, 1059–1068 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Perrimon, N. The maternal effect of lethal(1)discs-large-1: a recessive oncogene of Drosophila melanogaster. Dev. Biol. 127, 382–407 (1988).

    Article  Google Scholar 

  26. Strutt, D., Johnson, R., Cooper, K., & Bray, S. Asymmetric localization of frizzled and the determination of notch-dependent cell fate in the Drosophila eye. Curr. Biol. 12, 813–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Rawls, A.S. & Wolff, T. Strabismus requires Flamingo and Prickle function to regulate tissue polarity in the Drosophila eye. Development 130, 1877–1887 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Bastock, R., Strutt, H., & Strutt, D. Strabismus is asymmetrically localized and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 130, 3007–3014 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Tepass, U., Tanentzapf, G., Ward, R. & Fehon, R. Epithelial cell polarity and cell junctions in Drosophila. Annu. Rev. Genet. 35, 747–784 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Bilder, D., Li, M. & Perrimon, N. Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors. Science 289, 113–116 (2002).

    Article  Google Scholar 

  31. Fujita Y. et al. Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20, 905–915 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Lehman, K., Rossi, G., Adamo, J.E. & Brenwald, P. Yeast homologues of Tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, sec9. J. Cell Biol. 146, 125–140 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Murdoch, J.N. et al. Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum. Mol. Genet. 12, 87–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Sans, N. et al. NMDA receptor trafficking through an interaction between PDZ proteins and the exocyst complex. Nature Cell Biol. 5, 520–530 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Novick, P. & Guo, W. Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol. 12, 247–249 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Durfee, T. et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7, 555–569 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Weiss, R.S., McArthur, M.J., & Javier, R.T. Human adenovirus type 9 E4 open reading frame 1 encodes a cytoplasmic transforming protein capable of increasing the oncogenicity of CREF cells. J. Virol. 70, 862–872 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Kuroda, R. Kelley, S. Izaddoost, and K.-W. Choi for valuable discussions, T. Wolff for stbm mutants and stbm cDNA, P. Bryant for dlg mutants and guinea pig anti-Dlg antibody, S. Ou and P. Patterson for generating anti-Stbm antibody, M. Lowe for anti-GM130 antibody, S. Elledge for two-hybrid system reagents, H. Bellen for Hrs and Nrx antibodies, and the Bloomington Stock Center for fly strains. K.K.F. was the recipient of the Viral Oncology Training Grant predoctoral fellowship T32 CA009197. R.T.J. and K.-O.C. were supported by National Institutes of Health grants RO1 CA058541 and R29 NS35532, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ok Cho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2 (PDF 1263 kb)

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, OK., Frese, K., James, J. et al. Discs-Large and Strabismus are functionally linked to plasma membrane formation. Nat Cell Biol 5, 987–993 (2003). https://doi.org/10.1038/ncb1055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1055

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing