Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rap2A links intestinal cell polarity to brush border formation

This article has been updated

Abstract

The microvillus brush border at the apex of the highly polarized enterocyte allows the regulated uptake of nutrients from the intestinal lumen. Here, we identify the small G protein Rap2A as a molecular link that couples the formation of microvilli directly to the preceding cell polarization. Establishment of apicobasal polarity, which can be triggered by the kinase LKB1 in single, isolated colon cells, results in enrichment of PtdIns(4,5)P2 at the apical membrane. The subsequent recruitment of phospholipase D1 allows polarized accumulation of phosphatidic acid, which provides a local cue for successive signalling by the guanine nucleotide exchange factor PDZGEF, the small G protein Rap2A, its effector TNIK, the kinase MST4 and, ultimately, the actin-binding protein Ezrin. Thus, epithelial cell polarization is translated directly into the acquisition of brush borders through a small G protein signalling module whose action is positioned by a cortical lipid cue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rap2A is required for intestinal epithelial brush border formation.
Figure 2: Activation of Rap2A by PDZGEF downstream of LKB1.
Figure 3: PDZGEF is apically targeted by local generation of phosphatidic acid.
Figure 4: Rap2A-mediated brush border formation requires its effector TNIK.
Figure 5: Rap2A controls the apical targeting of MST4.
Figure 6: Rap2A controls brush border formation by regulation of Ezrin phosphorylation.

Similar content being viewed by others

Change history

  • 17 July 2012

    In the version of this article initially published online, an arrowhead in Fig 6f was incorrectly placed. This has been corrected.

References

  1. McCaffrey, L. M. & Macara, I. G. Widely conserved signaling pathways in the establishment of cell polarity. Cold Spring Harb. Perspect. Biol. 1, a001370 (2009).

    Article  Google Scholar 

  2. Zeqiraj, E., Filippi, B. M., Deak, M., Alessi, D. R. & van Aalten, D. M. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Science 326, 1707–1711 (2009).

    Article  CAS  Google Scholar 

  3. Baas, A. F. et al. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. 22, 3062–3072 (2003).

    Article  CAS  Google Scholar 

  4. Boudeau, J. et al. MO25α/β interact with STRADα/β enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J. 22, 5102–5114 (2003).

    Article  CAS  Google Scholar 

  5. Dorfman, J. & Macara, I. G. STRADα regulates LKB1 localization by blocking access to importin-α, and by association with Crm1 and exportin-7. Mol. Biol. Cell 19, 1614–1626 (2008).

    Article  CAS  Google Scholar 

  6. Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466 (2004).

    Article  CAS  Google Scholar 

  7. Alessi, D. R., Sakamoto, K. & Bayascas, J. R. LKB1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137–163 (2006).

    Article  CAS  Google Scholar 

  8. Park, H. O., Chant, J. & Herskowitz, I. BUD2 encodes a GTPase-activating protein for Bud1/Rsr1 necessary for proper bud-site selection in yeast. Nature 365, 269–274 (1993).

    Article  CAS  Google Scholar 

  9. Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y. & Bretscher, A. Mechanisms of polarized growth and organelle segregation in yeast. Annu. Rev. Cell Dev. Biol. 20, 559–591 (2004).

    Article  CAS  Google Scholar 

  10. Riedl, J. et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  11. Ten Klooster, J. P. et al. MST4 and Ezrin induce brush borders downstream of the LKB1/STRAD/MO25 polarization complex. Dev. Cell 16, 551–562 (2009).

    Article  CAS  Google Scholar 

  12. Fehon, R. G., McClatchey, A. I. & Bretscher, A. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol. 11, 276–287 (2010).

    Article  CAS  Google Scholar 

  13. Machida, N. et al. Mitogen-activated protein kinase kinase kinase kinase 4 as a putative effector of Rap2 to activate the c-Jun N-terminal kinase. J. Biol. Chem. 279, 15711–15714 (2004).

    Article  CAS  Google Scholar 

  14. Taira, K. et al. The Traf2- and Nck-interacting kinase as a putative effector of Rap2 to regulate actin cytoskeleton. J. Biol. Chem. 279, 49488–49496 (2004).

    Article  CAS  Google Scholar 

  15. Pannekoek, W. J. et al. Epac1 and PDZ-GEF cooperate in Rap1 mediated endothelial junction control. Cell Signal 23, 2056–2064 (2011).

    Article  CAS  Google Scholar 

  16. Shewan, A., Eastburn, D. J. & Mostov, K. Phosphoinositides in cell architecture. Cold Spring Harb. Perspect. Biol. 3, a004796 (2011).

    Article  Google Scholar 

  17. Van den Bout, I. & Divecha, N. PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J. Cell Sci. 122, 3837–3850 (2009).

    Article  CAS  Google Scholar 

  18. Sciorra, V. A. et al. Identification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO J. 18, 5911–5921 (1999).

    Article  CAS  Google Scholar 

  19. Hodgkin, M. N. et al. Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-biphosphate-specific PH domain. Curr. Biol. 10, 43–46 (2000).

    Article  CAS  Google Scholar 

  20. Du, G. et al. Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J. Cell Biol. 162, 305–315 (2003).

    Article  CAS  Google Scholar 

  21. Zeniou-Meyer, M. et al. Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J. Biol. Chem. 282, 21746–21757 (2007).

    Article  CAS  Google Scholar 

  22. Nonaka, H. et al. MINK is a Rap2 effector for phosphorylation of thepostsynaptic scaffold protein TANC1. Biochem. Biophys. Res. Commun. 377, 573–578 (2008).

    Article  CAS  Google Scholar 

  23. Gobel, V., Barrett, P. L., Hall, D. H. & Fleming, J. T. Lumen morphogenesis in C. elegans requires the membrane-cytoskeleton linker erm-1. Dev. Cell 6, 865–873 (2004).

    Article  Google Scholar 

  24. Martin-Belmonte, F. et al. PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007).

    Article  CAS  Google Scholar 

  25. Zhao, C., Du, G., Skowronek, K., Frohman, M. A. & Bar-Sagi, D. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat. Cell Biol. 9, 706–712 (2007).

    CAS  PubMed  Google Scholar 

  26. Gureasko, J. et al. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat. Struct. Mol. Biol. 15, 452–461 (2008).

    Article  CAS  Google Scholar 

  27. Nishikimi, A. et al. Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis. Science 324, 384–387 (2009).

    Article  CAS  Google Scholar 

  28. Matsuki, T. et al. Reelin and stk25 have opposing roles in neuronal polarization and dendritic Golgi deployment. Cell 143, 826–836 (2010).

    Article  CAS  Google Scholar 

  29. Preisinger, C. et al. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3zeta. J. Cell Biol. 164, 1009–1020 (2004).

    Article  CAS  Google Scholar 

  30. Katagiri, K., Imamura, M. & Kinashi, T. Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat. Immunol. 7, 919–928 (2006).

    Article  CAS  Google Scholar 

  31. Schwamborn, J. C. & Puschel, A. W. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat. Neurosci. 7, 923–929 (2004).

    Article  CAS  Google Scholar 

  32. Lee, K. J. et al. Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory. Neuron 69, 957–973 (2011).

    Article  CAS  Google Scholar 

  33. Dube, N. et al. The RapGEF PDZ-GEF2 is required for maturation of cell–cell junctions. Cell Signal 20, 1608–1615 (2008).

    Article  CAS  Google Scholar 

  34. Ponsioen, B. et al. Direct spatial control of Epac1 by cAMP. Mol. Cell Biol. 29, 2521–2531 (2009).

    Article  CAS  Google Scholar 

  35. Reedquist, K. A. et al. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J. Cell Biol. 148, 1151–1158 (2000).

    Article  CAS  Google Scholar 

  36. Van der Wal, J., Habets, R., Varnai, P., Balla, T. & Jalink, K. Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J. Biol. Chem. 276, 15337–15344 (2001).

    Article  CAS  Google Scholar 

  37. Varnai, P. et al. Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase C delta 1 and p130. J. Biol. Chem. 277, 27412–27422 (2002).

    Article  CAS  Google Scholar 

  38. Lewis, J. A. & Fleming, J. T. Basic culture methods. Methods Cell Biol. 48, 3–29 (1995).

    Article  CAS  Google Scholar 

  39. Van Triest, M., de Rooij, J. & Bos, J. L. Measurement of GTP-bound Ras-like GTPases by activation-specific probes. Methods Enzymol. 333, 343–348 (2001).

    Article  CAS  Google Scholar 

  40. Fang, Y., Vilella-Bach, M., Bachmann, R., Flanigan, A. & Chen, J. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945 (2001).

    Article  CAS  Google Scholar 

  41. Van Galen, J. et al. Binding of GAPR-1 to negatively charged phospholipid membranes: unusual binding characteristics to phosphatidylinositol. Mol. Membr. Biol. 27, 81–91.

Download references

Acknowledgements

We are grateful to R. Wedlich-Söldner (Max Planck Institute of Biochemistry, Martinsried, Germany), N. Vitale (Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France), T. Balla (National Institutes of Health, Bethesda, USA), J. Chen (University of Illinois, Urbana, USA) and S. van den Heuvel (Universiteit Utrecht, Utrecht, The Netherlands) for providing reagents. We thank W. Vonk, L. Kleij and K. Lee for technical assistance, C. Garner for assistance with lentiviral infections, K. Jalink for discussions, G. Kops, T. Pawson and J. Nelson for critical reading of the manuscript, and the members of our laboratories for continuous support and stimulating discussions. This study is supported by the Dutch Cancer Society (KWF; J.P.t.K. and M.J.V.), Chemical Sciences (M.G.) and the Netherlands Genomics Initiative (J.L.B. and H.C.) of the Netherlands Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Contributions

M.G., J.P.t.K. and J.L.B. designed the study and experiments; M.G., J.P.t.K., M.J.V., T.K. and F.J.Z. performed experiments; M.G. and J.L.B. wrote the manuscript; H.C. and J.L.B. supervised the study.

Corresponding authors

Correspondence to Martijn Gloerich or Johannes L. Bos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 789 kb)

Supplementary Movie 1

(MPG 678 kb)

Supplementary Movie 2

(MPG 678 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloerich, M., ten Klooster, J., Vliem, M. et al. Rap2A links intestinal cell polarity to brush border formation. Nat Cell Biol 14, 793–801 (2012). https://doi.org/10.1038/ncb2537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing