Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects

Abstract

2-Arachidonoylglycerol (2-AG) and anandamide are endocannabinoids that activate the cannabinoid receptors CB1 and CB2. Endocannabinoid signaling is terminated by enzymatic hydrolysis, a process that for anandamide is mediated by fatty acid amide hydrolase (FAAH), and for 2-AG is thought to involve monoacylglycerol lipase (MAGL). FAAH inhibitors produce a select subset of the behavioral effects observed with CB1 agonists, which suggests a functional segregation of endocannabinoid signaling pathways in vivo. Testing this hypothesis, however, requires specific tools to independently block anandamide and 2-AG metabolism. Here, we report a potent and selective inhibitor of MAGL called JZL184 that, upon administration to mice, raises brain 2-AG by eight-fold without altering anandamide. JZL184-treated mice exhibited a broad array of CB1-dependent behavioral effects, including analgesia, hypothermia and hypomotility. These data indicate that 2-AG endogenously modulates several behavioral processes classically associated with the pharmacology of cannabinoids and point to overlapping and unique functions for 2-AG and anandamide in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and competitive ABPP profiles of MAGL inhibitors.
Figure 2: In vitro characterization of JZL184.
Figure 3: In vivo characterization of JZL184.
Figure 4: JZL184 raises interstitial levels of 2-AG following neuronal depolarization.
Figure 5: Time course analysis of inhibitory activity of JZL184 in vivo.
Figure 6: Behavioral effects of JZL184.

Similar content being viewed by others

References

  1. Mackie, K. Cannabinoid receptors as therapeutic targets. Annu. Rev. Pharmacol. Toxicol. 46, 101–122 (2006).

    Article  CAS  Google Scholar 

  2. Devane, W.A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    Article  CAS  Google Scholar 

  3. Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    Article  CAS  Google Scholar 

  4. Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    Article  CAS  Google Scholar 

  5. Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    Article  CAS  Google Scholar 

  6. Hohmann, A.G. et al. An endocannabinoid mechanism for stress-induced analgesia. Nature 435, 1108–1112 (2005).

    Article  CAS  Google Scholar 

  7. Holt, S., Comelli, F., Costa, B. & Fowler, C.J. Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors. Br. J. Pharmacol. 146, 467–476 (2005).

    Article  CAS  Google Scholar 

  8. Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    Article  CAS  Google Scholar 

  9. Varvel, S.A. & Lichtman, A.H. Evaluation of CB1 receptor knockout mice in the Morris water maze. J. Pharmacol. Exp. Ther. 301, 915–924 (2002).

    Article  CAS  Google Scholar 

  10. Di Marzo, V. Targeting the endocannabinoid system: to enhance or reduce? Nat. Rev. Drug Discov. 7, 438–455 (2008).

    Article  CAS  Google Scholar 

  11. Ahn, K., McKinney, M.K. & Cravatt, B.F. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem. Rev. 108, 1687–1707 (2008).

    Article  CAS  Google Scholar 

  12. Cravatt, B.F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    Article  CAS  Google Scholar 

  13. Cravatt, B.F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  Google Scholar 

  14. Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).

    Article  CAS  Google Scholar 

  15. Lichtman, A.H. et al. Reversible inhibitors of fatty acid amide hydrolase that promote analgesia: evidence for an unprecedented combination of potency and selectivity. J. Pharmacol. Exp. Ther. 311, 441–448 (2004).

    Article  CAS  Google Scholar 

  16. Ahn, K., McKinney, M.K. & Cravatt, B.F. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem. Rev. 108, 1687–1707 (2008).

    Article  CAS  Google Scholar 

  17. Cravatt, B.F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98, 9371–9376 (2001).

    Article  CAS  Google Scholar 

  18. Dinh, T.P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 99, 10819–10824 (2002).

    Article  CAS  Google Scholar 

  19. Dinh, T.P., Kathuria, S. & Piomelli, D. RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol. Mol. Pharmacol. 66, 1260–1264 (2004).

    Article  CAS  Google Scholar 

  20. Blankman, J.L., Simon, G.M. & Cravatt, B.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem. Biol. 14, 1347–1356 (2007).

    Article  CAS  Google Scholar 

  21. Nomura, D.K. et al. Activation of the endocannabinoid system by organophosphorus nerve agents. Nat. Chem. Biol. 4, 373–378 (2008).

    Article  CAS  Google Scholar 

  22. Saario, S.M. et al. Characterization of the sulfhydryl-sensitive site in the enzyme responsible for hydrolysis of 2-arachidonoyl-glycerol in rat cerebellar membranes. Chem. Biol. 12, 649–656 (2005).

    Article  CAS  Google Scholar 

  23. King, A.R. et al. URB602 inhibits monoacylglycerol lipase and selectively blocks 2-arachidonoylglycerol degradation in intact brain slices. Chem. Biol. 14, 1357–1365 (2007).

    Article  CAS  Google Scholar 

  24. Vandevoorde, S. et al. Lack of selectivity of URB602 for 2-oleoylglycerol compared to anandamide hydrolysis in vitro. Br. J. Pharmacol. 150, 186–191 (2007).

    Article  CAS  Google Scholar 

  25. Burston, J.J. et al. N-Arachidonyl maleimide potentiates the pharmacological and biochemical effects of the endocannabinoid 2-arachidonylglycerol through inhibition of monoacylglycerol lipase. J. Pharmacol. Exp. Ther. 327, 546–553 (2008).

    Article  CAS  Google Scholar 

  26. Alexander, J.P. & Cravatt, B.F. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem. Biol. 12, 1179–1187 (2005).

    Article  CAS  Google Scholar 

  27. Li, W., Blankman, J.L. & Cravatt, B.F. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J. Am. Chem. Soc. 129, 9594–9595 (2007).

    Article  CAS  Google Scholar 

  28. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  Google Scholar 

  29. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  30. Leung, D., Hardouin, C., Boger, D.L. & Cravatt, B.F. Discovering potent and selective inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21, 687–691 (2003).

    Article  CAS  Google Scholar 

  31. Greenbaum, D. et al. Chemical approaches for functionally probing the proteome. Mol. Cell. Proteomics 1, 60–68 (2002).

    Article  CAS  Google Scholar 

  32. Jessani, N. et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nat. Methods 2, 691–697 (2005).

    Article  CAS  Google Scholar 

  33. Cravatt, B.F. et al. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc. Natl. Acad. Sci. USA 101, 10821–10826 (2004).

    Article  CAS  Google Scholar 

  34. Fegley, D. et al. Characterization of the fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597): effects on anandamide and oleoylethanolamide deactivation. J. Pharmacol. Exp. Ther. 313, 352–358 (2005).

    Article  CAS  Google Scholar 

  35. Caille, S., Alvarez-Jaimes, L., Polis, I., Stouffer, D.G. & Parsons, L.H. Specific alterations of extracellular endocannabinoid levels in the nucleus accumbens by ethanol, heroin, and cocaine self-administration. J. Neurosci. 27, 3695–3702 (2007).

    Article  CAS  Google Scholar 

  36. Bequet, F. et al. CB1 receptor-mediated control of the release of endocannabinoids (as assessed by microdialysis coupled with LC/MS) in the rat hypothalamus. Eur. J. Neurosci. 26, 3458–3464 (2007).

    Article  Google Scholar 

  37. Wiley, J.L. & Martin, B.R. Cannabinoid pharmacological properties common to other centrally acting drugs. Eur. J. Pharmacol. 471, 185–193 (2003).

    Article  CAS  Google Scholar 

  38. Compton, D.R., Aceto, M.D., Lowe, J. & Martin, B.R. In vivo characterization of a specific cannabinoid receptor antagonist (SR141716A): inhibition of delta 9-tetrahydrocannabinol-induced responses and apparent agonist activity. J. Pharmacol. Exp. Ther. 277, 586–594 (1996).

    CAS  PubMed  Google Scholar 

  39. Siegel, G.J., Agranoff, B.W., Albers, R.W. & Molinoff, P.B. Basic Neurochemistry: Molecular, Cellular, and Medical Aspects, 5th ed. (eds. Siegel, J., Agranoff, B.W., Albers, R.W. and Molinoff, P.B. ) (Raven Press, New York, 1994).

    Google Scholar 

  40. Piomelli, D. et al. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev. 12, 21–38 (2006).

    Article  CAS  Google Scholar 

  41. Cravatt, B.F. & Lichtman, A.H. Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr. Opin. Chem. Biol. 7, 469–475 (2003).

    Article  CAS  Google Scholar 

  42. Zhang, D. et al. Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets. Neuropharmacology 52, 1095–1105 (2007).

    Article  CAS  Google Scholar 

  43. Chen, J.K. et al. Identification of novel endogenous cytochrome p450 arachidonate metabolites with high affinity for cannabinoid receptors. J. Biol. Chem. 283, 24514–24524 (2008).

    Article  CAS  Google Scholar 

  44. Kozak, K.R., Rowlinson, S.W. & Marnett, L.J. Oxygenation of the endocannabinoid, 2-arachidonylglycerol, to glyceryl prostaglandins by cyclooxygenase-2. J. Biol. Chem. 275, 33744–33749 (2000).

    Article  CAS  Google Scholar 

  45. Patricelli, M.P., Giang, D.K., Stamp, L.M. & Burbaum, J.J. Direct visualization of serine hydrolase activities in complex proteomes using fluorescent active site-directed probes. Proteomics 1, 1067–1071 (2001).

    Article  CAS  Google Scholar 

  46. Karlsson, M. et al. Exon-intron organization and chromosomal localization of the mouse monoglyceride lipase gene. Gene 272, 11–18 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Cravatt lab for helpful discussion and critical reading of the manuscript. This work was supported by the US National Institutes of Health (DA017259, DA025285, DA007027, DA005274 AA014619, DA024194 and AA06420), the Helen L. Dorris Institute Child and Adolescent Neuro-Psychiatric Disorder Institute and the Skaggs Institute for Chemical Biology.

Author information

Authors and Affiliations

Authors

Contributions

J.Z.L., L.H.P., A.H.L. and B.F.C. designed the experiments. J.Z.L. and W.L. synthesized and characterized the inhibitors. F.J.P., A.M.S. and L.H.P. measured extracellular endocannabinoid levels. L.B., J.J.B., S.G.K., J.E.S., D.E.S. and A.H.L. performed behavioral studies. J.Z.L. and B.F.C. wrote the manuscript.

Corresponding author

Correspondence to Benjamin F Cravatt.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1, Supplementary Methods (PDF 1814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, J., Li, W., Booker, L. et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol 5, 37–44 (2009). https://doi.org/10.1038/nchembio.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing