Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein

Abstract

Phosphatidylinositol (4,5)-bisphosphate (PIP2) regulates the function of ion channels and transporters. Here, we demonstrate that PIP2 directly binds the human dopamine (DA) transporter (hDAT), a key regulator of DA homeostasis and a target of the psychostimulant amphetamine (AMPH). This binding occurs through electrostatic interactions with positively charged hDAT N-terminal residues and is shown to facilitate AMPH-induced, DAT-mediated DA efflux and the psychomotor properties of AMPH. Substitution of these residues with uncharged amino acids reduces hDAT-PIP2 interactions and AMPH-induced DA efflux without altering the hDAT physiological function of DA uptake. We evaluated the significance of this interaction in vivo using locomotion as a behavioral assay in Drosophila melanogaster. Expression of mutated hDAT with reduced PIP2 interaction in Drosophila DA neurons impairs AMPH-induced locomotion without altering basal locomotion. We present what is to our knowledge the first demonstration of how PIP2 interactions with a membrane protein can regulate the behaviors of complex organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIP2 interacts with hDAT.
Figure 2: hDAT-PIP2 electrostatic interactions are mediated by the hDAT N terminus.
Figure 3: Sequestration or depletion of PIP2 inhibits AMPH-induced DA efflux.
Figure 4: The hDAT N-terminal lysine regulates hDAT-PIP2 interaction.
Figure 5: N-terminal Lys3 and Lys5 regulate specific modalities of hDAT function.
Figure 6: Expression of hDAT K/A in Drosophila dopaminergic neurons does not affect circadian locomotor activity yet impairs AMPH-induced locomotion and neuronal DA efflux.

Similar content being viewed by others

References

  1. Suh, B.C. & Hille, B. PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37, 175–195 (2008).

    Article  CAS  Google Scholar 

  2. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    Article  CAS  Google Scholar 

  3. Kadamur, G. & Ross, E.M. Mammalian phospholipase C. Annu. Rev. Physiol. 75, 127–154 (2013).

    Article  CAS  Google Scholar 

  4. Czech, M.P. PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603–606 (2000).

    Article  CAS  Google Scholar 

  5. Ben-Aissa, K. et al. Activation of moesin, a protein that links actin cytoskeleton to the plasma membrane, occurs by phosphatidylinositol 4,5-bisphosphate (PIP2) binding sequentially to two sites and releasing an autoinhibitory linker. J. Biol. Chem. 287, 16311–16323 (2012).

    Article  CAS  Google Scholar 

  6. Whorton, M.R. & MacKinnon, R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147, 199–208 (2011).

    Article  CAS  Google Scholar 

  7. Buchmayer, F. et al. Amphetamine actions at the serotonin transporter rely on the availability of phosphatidylinositol-4,5-bisphosphate. Proc. Natl. Acad. Sci. USA 110, 11642–11647 (2013).

    Article  CAS  Google Scholar 

  8. Pizzo, A.B. et al. The membrane raft protein Flotillin-1 is essential in dopamine neurons for amphetamine-induced behavior in Drosophila. Mol. Psychiatry 18, 824–833 (2013).

    Article  CAS  Google Scholar 

  9. Hamilton, P.J. et al. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol. Psychiatry 18, 1315–1353 (2013).

    Article  CAS  Google Scholar 

  10. Giros, B., Jaber, M., Jones, S.R., Wightman, R.M. & Caron, M.G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379, 606–612 (1996).

    Article  CAS  Google Scholar 

  11. Sulzer, D., Sonders, M.S., Poulsen, N.W. & Galli, A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75, 406–433 (2005).

    Article  CAS  Google Scholar 

  12. Robertson, S.D., Matthies, H.J. & Galli, A. A closer look at amphetamine-induced reverse transport and trafficking of the dopamine and norepinephrine transporters. Mol. Neurobiol. 39, 73–80 (2009).

    Article  CAS  Google Scholar 

  13. Cervinski, M.A., Foster, J.D. & Vaughan, R.A. Psychoactive substrates stimulate dopamine transporter phosphorylation and down regulation by cocaine sensitive and protein kinase C dependent mechanisms. J. Biol. Chem. 280, 40442–40449 (2005).

    Article  CAS  Google Scholar 

  14. Khoshbouei, H. et al. N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol. 2, E78 (2004).

    Article  Google Scholar 

  15. Fog, J.U. et al. Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51, 417–429 (2006).

    Article  CAS  Google Scholar 

  16. Cremona, M.L. et al. Flotillin-1 is essential for PKC-triggered endocytosis and membrane microdomain localization of DAT. Nat. Neurosci. 14, 469–477 (2011).

    Article  CAS  Google Scholar 

  17. Wang, J. & Richards, D.A. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol. Open 1, 857–862 (2012).

    Article  CAS  Google Scholar 

  18. Hope, H.R. & Pike, L.J. Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-insoluble lipid domains. Mol. Biol. Cell 7, 843–851 (1996).

    Article  CAS  Google Scholar 

  19. Várnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell Biol. 143, 501–510 (1998).

    Article  Google Scholar 

  20. McLaughlin, S., Wang, J., Gambhir, A. & Murray, D. PIP2 and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002).

    Article  CAS  Google Scholar 

  21. Hilgemann, D.W. & Ball, R. Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2 . Science 273, 956–959 (1996).

    Article  CAS  Google Scholar 

  22. Bowton, E. et al. Dysregulation of dopamine transporters via dopamine D2 autoreceptors triggers anomalous dopamine efflux associated with attention-deficit hyperactivity disorder. J. Neurosci. 30, 6048–6057 (2010).

    Article  CAS  Google Scholar 

  23. Binda, F. et al. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux. Mol. Pharmacol. 74, 1101–1108 (2008).

    Article  CAS  Google Scholar 

  24. Várnai, P. et al. Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase C δ1 and p130. J. Biol. Chem. 277, 27412–27422 (2002).

    Article  Google Scholar 

  25. Robbins, J., Marsh, S.J. & Brown, D.A. Probing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides. J. Neurosci. 26, 7950–7961 (2006).

    Article  CAS  Google Scholar 

  26. Beuming, T. et al. The binding sites for cocaine and dopamine in the dopamine transporter overlap. Nat. Neurosci. 11, 780–789 (2008).

    Article  CAS  Google Scholar 

  27. Bisgaard, H. et al. The binding sites for benztropines and dopamine in the dopamine transporter overlap. Neuropharmacology 60, 182–190 (2011).

    Article  CAS  Google Scholar 

  28. Kniazeff, J. et al. An intracellular interaction network regulates conformational transitions in the dopamine transporter. J. Biol. Chem. 283, 17691–17701 (2008).

    Article  CAS  Google Scholar 

  29. Khelashvili, G., Galli, A. & Weinstein, H. Phosphatidylinositol 4,5-biphosphate (PIP2) lipids regulate the phosphorylation of syntaxin N-terminus by modulating both its position and local structure. Biochemistry 51, 7685–7698 (2012).

    Article  CAS  Google Scholar 

  30. Khelashvili, G., Harries, D. & Weinstein, H. Modeling membrane deformations and lipid demixing upon protein-membrane interaction: the BAR dimer adsorption. Biophys. J. 97, 1626–1635 (2009).

    Article  CAS  Google Scholar 

  31. Khelashvili, G., Weinstein, H. & Harries, D. Protein diffusion on charged membranes: a dynamic mean-field model describes time evolution and lipid reorganization. Biophys. J. 94, 2580–2597 (2008).

    Article  CAS  Google Scholar 

  32. Balla, T., Szentpetery, Z. & Kim, Y.J. Phosphoinositide signaling: new tools and insights. Physiology (Bethesda) 24, 231–244 (2009).

    CAS  Google Scholar 

  33. Wicker-Thomas, C. & Hamann, M. Interaction of dopamine, female pheromones, locomotion and sex behavior in Drosophila melanogaster. J. Insect Physiol. 54, 1423–1431 (2008).

    Article  CAS  Google Scholar 

  34. Pendleton, R.G., Rasheed, A., Sardina, T., Tully, T. & Hillman, R. Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics. Behav. Genet. 32, 89–94 (2002).

    Article  Google Scholar 

  35. Kume, K., Kume, S., Park, S.K., Hirsh, J. & Jackson, F.R. Dopamine is a regulator of arousal in the fruit fly. J. Neurosci. 25, 7377–7384 (2005).

    Article  CAS  Google Scholar 

  36. van Rheenen, J., Achame, E.M., Janssen, H., Calafat, J. & Jalink, K. PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J. 24, 1664–1673 (2005).

    Article  CAS  Google Scholar 

  37. Sorkina, T., Caltagarone, J. & Sorkin, A. Flotillins regulate membrane mobility of the dopamine transporter but are not required for its protein kinase C dependent endocytosis. Traffic 14, 709–724 (2013).

    Article  Google Scholar 

  38. Gabriel, L.R. et al. Dopamine transporter endocytic trafficking in striatal dopaminergic neurons: differential dependence on dynamin and the actin cytoskeleton. J. Neurosci. 33, 17836–17846 (2013).

    Article  CAS  Google Scholar 

  39. Mazei-Robison, M.S. et al. Anomalous dopamine release associated with a human dopamine transporter coding variant. J. Neurosci. 28, 7040–7046 (2008).

    Article  CAS  Google Scholar 

  40. Das, R. & Baker, D. Macromolecular modeling with Rosetta. Annu. Rev. Biochem. 77, 363–382 (2008).

    Article  CAS  Google Scholar 

  41. Gracia, L. RMSDTT: RMSD Trajectory Tool, 2.5 ed., (Weill Medical College of Cornell University, Department of Physiology and Biophysics, 2005).

  42. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–8, 27–8 (1996).

    Article  CAS  Google Scholar 

  43. Earl, D.J. & Deem, M.W. Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005).

    Article  CAS  Google Scholar 

  44. Kiessling, V., Wan, C. & Tamm, L.K. Domain coupling in asymmetric lipid bilayers. Biochim. Biophys. Acta 1788, 64–71 (2009).

    Article  CAS  Google Scholar 

  45. Šali, A. & Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    Article  Google Scholar 

  46. Sharp, K.A. & Honig, B. Electrostatic interactions in macromolecules: theory and applications. Annu. Rev. Biophys. Biophys. Chem. 19, 301–332 (1990).

    Article  CAS  Google Scholar 

  47. Chaikin, P.M. & Lubensky, T.C. Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000).

  48. Mackerell, A.D. Jr., Feig, M. & Brooks, C.L. III. Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004).

    Article  CAS  Google Scholar 

  49. Friggi-Grelin, F. et al. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54, 618–627 (2003).

    Article  CAS  Google Scholar 

  50. Wang, J.W., Beck, E.S. & McCabe, B.D. A modular toolset for recombination transgenesis and neurogenetic analysis of Drosophila. PLoS ONE 7, e42102 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Singh (Yale University) for the gift of the dDAT cDNA. Computational resources were provided by Teragrid allocation MCB120008 on the Ranger machine, by the NERSC allocation (repository m1710) on the Carver supercomputer and the David Cofrin Center for Biomedical Information of the Institute for Computational Biomedicine at Weill Cornell Medical College. This work was supported by US National Science Foundation Graduate Research Fellowship DGE0909667 (P.J.H.) and grants F31 DA 035535-01 (P.J.H.), 23658-B11 (H.H.S.), DA035263 (A.G.), P01 DA012408 (A.G., H.W. and J.A.J.) and U54GM087519 (H.W. and J.A.J.).

Author information

Authors and Affiliations

Authors

Contributions

P.J.H., A.N.B., G.K., C.S., K.E. and H.J.G.M. performed experiments. P.J.H., A.N.B., G.K., C.S., K.E., J.A.J., H.H.S., H.W., H.J.G.M. and A.G. designed experiments and analyzed data. G.K. and H.W. generated computational models and analyses. J.A.J. supplied expression vectors and plasmid DNA. P.J.H., A.N.B., H.W., H.J.G.M., G.K. and A.G. wrote the manuscript. All of the authors participated in the discussion of results and contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Heinrich J G Matthies or Aurelio Galli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–11. (PDF 955 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamilton, P., Belovich, A., Khelashvili, G. et al. PIP2 regulates psychostimulant behaviors through its interaction with a membrane protein. Nat Chem Biol 10, 582–589 (2014). https://doi.org/10.1038/nchembio.1545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing