Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase

Abstract

The PTH receptor is to our knowledge one of the first G protein–coupled receptor (GPCR) found to sustain cAMP signaling after internalization of the ligand–receptor complex in endosomes. This unexpected model is adding a new dimension on how we think about GPCR signaling, but its mechanism is incompletely understood. We report here that endosomal acidification mediated by the PKA action on the v-ATPase provides a negative feedback mechanism by which endosomal receptor signaling is turned off.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of endosomal pH on PTHR signaling.
Figure 2: Negative feedback mechanism.

Similar content being viewed by others

References

  1. Vilardaga, J.P., Gardella, T.J., Wehbi, V.L. & Feinstein, T.N. Non-canonical signaling of the PTH receptor. Trends Pharmacol. Sci. 33, 423–431 (2012).

    Article  CAS  Google Scholar 

  2. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    Article  CAS  Google Scholar 

  3. Feinstein, T.N. et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nat. Chem. Biol. 7, 278–284 (2011).

    Article  CAS  Google Scholar 

  4. Feinstein, T.N. et al. Noncanonical control of vasopressin receptor type 2 signaling by retromer and arrestin. J. Biol. Chem. 288, 27849–27860 (2013).

    Article  CAS  Google Scholar 

  5. Stenmark, H. et al. Inhibition of rab5 GTPase activity stimulates membrane fusion in endocytosis. EMBO J. 13, 1287–1296 (1994).

    Article  CAS  Google Scholar 

  6. Clague, M.J., Urbe, S., Aniento, F. & Gruenberg, J. Vacuolar ATPase activity is required for endosomal carrier vesicle formation. J. Biol. Chem. 269, 21–24 (1994).

    CAS  PubMed  Google Scholar 

  7. Castro, M., Nikolaev, V.O., Palm, D., Lohse, M.J. & Vilardaga, J.P. Turn-on switch in parathyroid hormone receptor by a two-step parathyroid hormone binding mechanism. Proc. Natl. Acad. Sci. USA 102, 16084–16089 (2005).

    Article  CAS  Google Scholar 

  8. van Weert, A.W., Dunn, K.W., Geuze, H.J., Maxfield, F.R. & Stoorvogel, W. Transport from late endosomes to lysosomes, but not sorting of integral membrane proteins in endosomes, depends on the vacuolar proton pump. J. Cell Biol. 130, 821–834 (1995).

    Article  CAS  Google Scholar 

  9. Pullara, F. et al. A general path for large-scale solubilization of cellular proteins: from membrane receptors to multiprotein complexes. Protein Expr. Purif. 87, 111–119 (2013).

    Article  CAS  Google Scholar 

  10. Nikolaev, V.O., Bunemann, M., Hein, L., Hannawacker, A. & Lohse, M.J. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279, 37215–37218 (2004).

    Article  CAS  Google Scholar 

  11. Wehbi, V.L. et al. Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gβγ complex. Proc. Natl. Acad. Sci. USA 110, 1530–1535 (2013).

    Article  CAS  Google Scholar 

  12. Alzamora, R. et al. PKA regulates vacuolar H+-ATPase localization and activity via direct phosphorylation of the a subunit in kidney cells. J. Biol. Chem. 285, 24676–24685 (2010).

    Article  CAS  Google Scholar 

  13. El Hage, T., Merlen, C., Fabrega, S. & Authier, F. Role of receptor-mediated endocytosis, endosomal acidification and cathepsin D in cholera toxin cytotoxicity. FEBS J. 274, 2614–2629 (2007).

    Article  CAS  Google Scholar 

  14. Basu, S.K., Goldstein, J.L., Anderson, R.G. & Brown, M.S. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell 24, 493–502 (1981).

    Article  CAS  Google Scholar 

  15. Brown, M.S. & Goldstein, J.L. Regulation of the activity of the low density lipoprotein receptor in human fibroblasts. Cell 6, 307–316 (1975).

    Article  CAS  Google Scholar 

  16. Rao, K., van Renswoude, J., Kempf, C. & Klausner, R.D. Separation of Fe+3 from transferrin in endocytosis. Role of the acidic endosome. FEBS Lett. 160, 213–216 (1983).

    Article  CAS  Google Scholar 

  17. Harford, J., Bridges, K., Ashwell, G. & Klausner, R.D. Intracellular dissociation of receptor-bound asialoglycoproteins in cultured hepatocytes. A pH-mediated nonlysosomal event. J. Biol. Chem. 258, 3191–3197 (1983).

    CAS  PubMed  Google Scholar 

  18. Krueger, K.M., Daaka, Y., Pitcher, J.A. & Lefkowitz, R.J. The role of sequestration in G protein–coupled receptor resensitization. Regulation of β2-adrenergic receptor dephosphorylation by vesicular acidification. J. Biol. Chem. 272, 5–8 (1997).

    Article  CAS  Google Scholar 

  19. Vilardaga, J.P., Romero, G., Feinstein, T.N. & Wehbi, V.L. Kinetics and dynamics in the G protein–coupled receptor signaling cascade. Methods Enzymol. 522, 337–363 (2013).

    Article  CAS  Google Scholar 

  20. Dean, T., Vilardaga, J.P., Potts, J.T. Jr. & Gardella, T.J. Altered selectivity of parathyroid hormone (PTH) and PTH-related protein (PTHrP) for distinct conformations of the PTH/PTHrP receptor. Mol. Endocrinol. 22, 156–166 (2008).

    Article  CAS  Google Scholar 

  21. Alexandrov, A.I., Mileni, M., Chien, E.Y., Hanson, M.A. & Stevens, R.C. Microscale fluorescent thermal stability assay for membrane proteins. Structure 16, 351–359 (2008).

    Article  CAS  Google Scholar 

  22. Vilardaga, J.P. Studying ligand efficacy at G protein–coupled receptors using FRET. Methods Mol. Biol. 756, 133–148 (2011).

    Article  CAS  Google Scholar 

  23. Binkowski, B.F., Fan, F. & Wood, K.V. Luminescent biosensors for real-time monitoring of intracellular cAMP. Methods Mol. Biol. 756, 263–271 (2011).

    Article  CAS  Google Scholar 

  24. Binkowski, B.F. et al. A luminescent biosensor with increased dynamic range for intracellular cAMP. ACS Chem. Biol. 6, 1193–1197 (2011).

    Article  CAS  Google Scholar 

  25. Sample, V. et al. Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nat. Chem. Biol. 8, 375–382 (2012).

    Article  CAS  Google Scholar 

  26. Alzamora, R. et al. AMP-activated protein kinase regulates the vacuolar H+-ATPase via direct phosphorylation of the A subunit (ATP6V1A) in the kidney. Am. J. Physiol. Renal Physiol. 305, F943–F956 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) of the US National Institutes of Health (NIH) under Award numbers R01 DK087688 and R01 DK102495 (to J.-P.V.), P01 DK11794 (project I to T.J.G.), R01 DK08184 (to N.M.P.-S.) and F32 DK097889 (to M.M.A.-B.) as well as the Cellular Physiology Core of the P30 DK079307 'Pittsburgh Kidney Research Center'. The authors thank K.R. Hallows for his suggestions on the v-ATPase phosphorylation assay.

Author information

Authors and Affiliations

Authors

Contributions

A.G. performed most of the experiments with support of C.L. and F.G.J.-A. H.S. and G.C. performed thermostability assays. T.W. and T.J.G. conducted all of the radioligand binding experiments. M.M.A.-B. and N.M.P.-S. conducted phosphorylation assays. A.K. synthesized all of the peptides. All of the authors contributed to discussions. J.-P.V., A.G. and T.J.G. analyzed the data. J.-P.V. and A.G. designed the project. J.-P.V. supervised the overall study and wrote the manuscript with support from A.G.

Corresponding author

Correspondence to Jean-Pierre Vilardaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Results and Supplementary Figures 1–10. (PDF 25235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gidon, A., Al-Bataineh, M., Jean-Alphonse, F. et al. Endosomal GPCR signaling turned off by negative feedback actions of PKA and v-ATPase. Nat Chem Biol 10, 707–709 (2014). https://doi.org/10.1038/nchembio.1589

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1589

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing