Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Retromer terminates the generation of cAMP by internalized PTH receptors

Abstract

The generation of cAMP by G protein–coupled receptors (GPCRs) and its termination are currently thought to occur exclusively at the plasma membrane of cells. Under existing models of receptor regulation, this signal is primarily restricted by desensitization of the receptors through their binding to β-arrestins. However, this paradigm is not consistent with recent observations that the parathyroid hormone receptor type 1 (PTHR) continues to stimulate cAMP production even after receptor internalization, as β-arrestins are known to rapidly bind and internalize activated PTHR. Here we show that binding to β-arrestin1 prolongs rather than terminates the generation of cAMP by PTHR, and that cAMP generation correlates with the persistence of arrestin–receptor complexes on endosomes. PTHR signaling is instead turned off by the retromer complex, which regulates the movement of internalized receptor from endosomes to the Golgi apparatus. Thus, binding by the retromer complex regulates the sustained generation of cAMP triggered by an internalized GPCR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time courses of cAMP and calcium responses to PTHR.
Figure 2: Signaling and arrestin mobilization by PTH analogs.
Figure 3: Retromer terminates the PTH-mediated cAMP response.
Figure 4: Modulation of PTHR signaling by retromer.
Figure 5: Retromer and arrestin regulate PTH-mediated cAMP production in bone cells.
Figure 6: Mode of regulation of PTHR signaling by retromer and arrestin.

Similar content being viewed by others

References

  1. Perry, S.J. et al. Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 298, 834–836 (2002).

    Article  CAS  Google Scholar 

  2. Premont, R.T. & Gainetdinov, R.R. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu. Rev. Physiol. 69, 511–534 (2007).

    Article  CAS  Google Scholar 

  3. Hanyaloglu, A.C. & von Zastrow, M. Regulation of GPCRs by endocytic membrane trafficking and its potential implications. Annu. Rev. Pharmacol. Toxicol. 48, 537–568 (2008).

    Article  CAS  Google Scholar 

  4. Ferrandon, S. et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat. Chem. Biol. 5, 734–742 (2009).

    Article  CAS  Google Scholar 

  5. Okazaki, M. et al. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation. Proc. Natl. Acad. Sci. USA 105, 16525–16530 (2008).

    Article  CAS  Google Scholar 

  6. Robben, J.H. et al. Intracellular activation of vasopressin V2 receptor mutants in nephrogenic diabetes insipidus by nonpeptide agonists. Proc. Natl. Acad. Sci. USA 106, 12195–12200 (2009).

    Article  CAS  Google Scholar 

  7. Calebiro, D. et al. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol. 7, e1000172 (2009).

    Article  Google Scholar 

  8. Finkelstein, J.S. & Arnold, A.L. Increases in bone mineral density after discontinuation of daily human parathyroid hormone and gonadotropin-releasing hormone analog administration in women with endometriosis. J. Clin. Endocrinol. Metab. 84, 1214–1219 (1999).

    CAS  PubMed  Google Scholar 

  9. Neer, R.M. et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344, 1434–1441 (2001).

    Article  CAS  Google Scholar 

  10. Horwitz, M.J. et al. Direct comparison of sustained infusion of human parathyroid hormone-related protein-(1–36) [hPTHrP-(1–36)] versus hPTH-(1–34) on serum calcium, plasma 1,25-dihydroxyvitamin D concentrations, and fractional calcium excretion in healthy human volunteers. J. Clin. Endocrinol. Metab. 88, 1603–1609 (2003).

    Article  CAS  Google Scholar 

  11. Vilardaga, J.P. et al. Internalization determinants of the parathyroid hormone receptor differentially regulate beta-arrestin/receptor association. J. Biol. Chem. 277, 8121–8129 (2002).

    Article  CAS  Google Scholar 

  12. Castro, M. et al. Dual regulation of the parathyroid hormone (PTH)/PTH-related peptide receptor signaling by protein kinase C and beta-arrestins. Endocrinology 143, 3854–3865 (2002).

    Article  CAS  Google Scholar 

  13. Ferrari, S.L., Behar, V., Chorev, M., Rosenblatt, M. & Bisello, A. Endocytosis of ligand-human parathyroid hormone receptor 1 complexes is protein kinase C-dependent and involves beta-arrestin2. Real-time monitoring by fluorescence microscopy. J. Biol. Chem. 274, 29968–29975 (1999).

    Article  CAS  Google Scholar 

  14. Malecz, N., Bambino, T., Bencsik, M. & Nissenson, R.A. Identification of phosphorylation sites in the G protein-coupled receptor for parathyroid hormone. Receptor phosphorylation is not required for agonist-induced internalization. Mol. Endocrinol. 12, 1846–1856 (1998).

    Article  CAS  Google Scholar 

  15. Rosenblatt, M. When two keys fit one lock, surprises follow. Nat. Chem. Biol. 5, 707–708 (2009).

    Article  CAS  Google Scholar 

  16. Nikolaev, V.O., Bunemann, M., Hein, L., Hannawacker, A. & Lohse, M.J. Novel single chain cAMP sensors for receptor-induced signal propagation. J. Biol. Chem. 279, 37215–37218 (2004).

    Article  CAS  Google Scholar 

  17. Nikolaev, V.O., Hoffmann, C., Bunemann, M., Lohse, M.J. & Vilardaga, J.P. Molecular basis of partial agonism at the neurotransmitter alpha2A-adrenergic receptor and Gi-protein heterotrimer. J. Biol. Chem. 281, 24506–24511 (2006).

    Article  CAS  Google Scholar 

  18. Pitcher, J., Lohse, M.J., Codina, J., Caron, M.G. & Lefkowitz, R.J. Desensitization of the isolated beta 2-adrenergic receptor by beta-adrenergic receptor kinase, cAMP-dependent protein kinase, and protein kinase C occurs via distinct molecular mechanisms. Biochemistry 31, 3193–3197 (1992).

    Article  CAS  Google Scholar 

  19. Violin, J.D. et al. beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J. Biol. Chem. 283, 2949–2961 (2008).

    Article  CAS  Google Scholar 

  20. Lohse, M.J., Benovic, J.L., Codina, J., Caron, M.G. & Lefkowitz, R.J. beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248, 1547–1550 (1990).

    Article  CAS  Google Scholar 

  21. Lohse, M.J. et al. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. J. Biol. Chem. 267, 8558–8564 (1992).

    CAS  PubMed  Google Scholar 

  22. Keyel, P.A. et al. The AP-2 adaptor beta2 appendage scaffolds alternate cargo endocytosis. Mol. Biol. Cell 19, 5309–5326 (2008).

    Article  CAS  Google Scholar 

  23. Burtey, A. et al. The conserved isoleucine-valine-phenylalanine motif couples activation state and endocytic functions of beta-arrestins. Traffic 8, 914–931 (2007).

    Article  CAS  Google Scholar 

  24. Feinstein, T.N. & Linstedt, A.D. GRASP55 regulates Golgi ribbon formation. Mol. Biol. Cell 19, 2696–2707 (2008).

    Article  CAS  Google Scholar 

  25. Garrido, J.L., Wheeler, D., Vega, L.L., Friedman, P.A. & Romero, G. Role of phospholipase D in parathyroid hormone type 1 receptor signaling and trafficking. Mol. Endocrinol. 23, 2048–2059 (2009).

    Article  CAS  Google Scholar 

  26. Collins, B.M. et al. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366–379 (2008).

    Article  CAS  Google Scholar 

  27. Collins, B.M. The structure and function of the retromer protein complex. Traffic 9, 1811–1822 (2008).

    Article  CAS  Google Scholar 

  28. Bonifacino, J.S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nat. Rev. Mol. Cell Biol. 7, 568–579 (2006).

    Article  CAS  Google Scholar 

  29. Zucker, R.M. & Lerner, J.M. Wavelength and alignment tests for confocal spectral imaging systems. Microsc. Res. Tech. 68, 307–319 (2005).

    Article  Google Scholar 

  30. Lerner, J.M. & Zucker, R.M. Calibration and validation of confocal spectral imaging systems. Cytometry A 62, 8–34 (2004).

    Article  Google Scholar 

  31. Popoff, V. et al. The retromer complex and clathrin define an early endosomal retrograde exit site. J. Cell Sci. 120, 2022–2031 (2007).

    Article  CAS  Google Scholar 

  32. Gaidarov, I., Krupnick, J.G., Falck, J.R., Benovic, J.L. & Keen, J.H. Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. EMBO J. 18, 871–881 (1999).

    Article  CAS  Google Scholar 

  33. Chauvin, S., Bencsik, M., Bambino, T. & Nissenson, R.A. Parathyroid hormone receptor recycling: role of receptor dephosphorylation and beta-arrestin. Mol. Endocrinol. 16, 2720–2732 (2002).

    Article  CAS  Google Scholar 

  34. Sneddon, W.B. et al. Activation-independent parathyroid hormone receptor internalization is regulated by NHERF1 (EBP50). J. Biol. Chem. 278, 43787–43796 (2003).

    Article  CAS  Google Scholar 

  35. Baillie, G.S. et al. beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc. Natl. Acad. Sci. USA 100, 940–945 (2003).

    Article  CAS  Google Scholar 

  36. Hoffmann, R., Baillie, G.S., MacKenzie, S.J., Yarwood, S.J. & Houslay, M.D. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 18, 893–903 (1999).

    Article  CAS  Google Scholar 

  37. Pippig, S. et al. Overexpression of beta-arrestin and beta-adrenergic receptor kinase augment desensitization of beta 2-adrenergic receptors. J. Biol. Chem. 268, 3201–3208 (1993).

    CAS  PubMed  Google Scholar 

  38. Krupnick, J.G., Gurevich, V.V. & Benovic, J.L. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J. Biol. Chem. 272, 18125–18131 (1997).

    Article  CAS  Google Scholar 

  39. Mahon, M.J., Bonacci, T.M., Divieti, P. & Smrcka, A.V. A docking site for G protein βγ subunits on the parathyroid hormone 1 receptor supports signaling through multiple pathways. Mol. Endocrinol. 20, 136–146 (2006).

    Article  CAS  Google Scholar 

  40. Johnston, C.A., Kimple, A.J., Giguere, P.M. & Siderovski, D.P. Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Structure 16, 1086–1094 (2008).

    Article  CAS  Google Scholar 

  41. Yang, M., He, R.L., Benovic, J.L. & Ye, R.D. β-Arrestin1 interacts with the G-protein subunits β1γ2 and promotes β1γ2-dependent Akt signalling for NF-κB activation. Biochem. J. 417, 287–296 (2009).

    Article  CAS  Google Scholar 

  42. Shi, H., Rojas, R., Bonifacino, J.S. & Hurley, J.H. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat. Struct. Mol. Biol. 13, 540–548 (2006).

    Article  CAS  Google Scholar 

  43. Aubry, L., Guetta, D. & Klein, G. The arrestin fold: variations on a theme. Curr. Genomics 10, 133–142 (2009).

    Article  CAS  Google Scholar 

  44. Nothwehr, S.F., Bruinsma, P. & Strawn, L.A. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol. Biol. Cell 10, 875–890 (1999).

    Article  CAS  Google Scholar 

  45. Hierro, A. et al. Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067 (2007).

    Article  CAS  Google Scholar 

  46. Seaman, M.N. Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389 (2007).

    Article  CAS  Google Scholar 

  47. Arighi, C.N., Hartnell, L.M., Aguilar, R.C., Haft, C.R. & Bonifacino, J.S. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133 (2004).

    Article  CAS  Google Scholar 

  48. Eaton, S. Retromer retrieves wntless. Dev. Cell 14, 4–6 (2008).

    Article  CAS  Google Scholar 

  49. Vergés, M. et al. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 6, 763–769 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health award R01DK087688 (to J.-P.V.). We thank J. Bonifacino for plasmids encoding retromer subunits Vps26 and Vps29YFP and L. Traub for plasmids encoding β-arrestin1tom and β-arrestin1[I386A, V387A]tom.

Author information

Authors and Affiliations

Authors

Contributions

T.N.F. performed most of the experiments with the support of V.L.W., J.A.A., D.S.W., S.F. and T.J.G.; J.-P.V. designed and supervised the experiments; J.-P.V. and T.N.F. analyzed the data and wrote the manuscript; all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jean-Pierre Vilardaga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–10 (PDF 1653 kb)

Supplementary Video 1

A three-dimensional reconstruction of a representative endosome labeled with Vps29YFP (blue), GFPPTHR (green) and β-arr1tom (red). (MOV 13562 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinstein, T., Wehbi, V., Ardura, J. et al. Retromer terminates the generation of cAMP by internalized PTH receptors. Nat Chem Biol 7, 278–284 (2011). https://doi.org/10.1038/nchembio.545

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing