Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy

Abstract

Limb-girdle muscular dystrophy (LGMD) is a clinically and genetically heterogeneous group of myopathies, including autosomal dominant and recessive forms1–3. To date, two autosomal dominant forms have been recognized2,3: LGMD1A, linked to chromosome 5q, and LGMD1B, associated with cardiac defects and linked to chromosome 1q11–21. Here we describe eight patients from two different families with a new form of autosomal dominant LGMD, which we propose to call LGMD1C, associated with a severe deficiency of caveolin-3 in muscle fibres. Caveolin-3 (or M-caveolin) is the muscle-specific form of the caveolin protein family, which also includes cave-olin-1 and -2 (refs 4–9). Caveolins are the principal protein components of caveolae (50–100 nm invaginations found in most cell types) which represent appendages or sub-compartments of plasma membranes10,11. We localized the human caveolin-3 gene (CAV3) to chromosome 3p25 and identified two mutations in the gene: a missense mutation in the membrane-spanning region and a micro-deletion in the scaffolding domain. These mutations may interfere with caveolin-3 oligomerization and disrupt caveolae formation at the muscle cell plasma membrane.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bushby, K. Towards the classification of the autosomal recessive limb-girdle muscular dystrophies. Neuromuscul. Disord. 6, 439–441 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Speer, M.C. et al. Confirmation of genetic heterogeneity in limb-girdle muscular dystrophy: linkage of an autosomal dominant form to chromosome 5q. Am. J. Hum. Genet. 50, 1211–1217 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Van der Kooi, A.J. et al. Genetic localization of a newly recognized autosomal dominant limb-girdle muscular dystrophy with cardiac involvement (LGMD 1B) to chromosome 1q11–21. Am. J. Hum. Genet. 60, 891–895 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Way, M. & Parton, R.G., caveolin, M.-, a muscle-specific caveolin-related protein. FEBS Lett. 376, 108–112 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Tang, Z. et al. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271, 2255–2261 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Parton, R.G. Caveolae and caveolins. Curr. Opin. Cell Biol. 8, 542–548 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Couet, J., Shengwen, L., Okamoto, T., Scherer, P.E. & Lisanti, M.P. Molecular and cellular biology of caveolae: Paradoxes and plasticities. Trends Cardiovasc. Med. 7, 103–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Scherer, P.E. et al. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc. Natl. Acad. Sci. USA 93, 131–135 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang, Z. et al. Identification, sequence and expression of an invertebrate caveolin gene family from the Nematode Caenorhabditis elegans. J. Biol. Chem. 272, 2437–2445 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445–458 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Simionescu, N., Simionescu, M. & Palade, G.E. Permeability of muscle capillaries to small heme-peptides: evidence for the existence of patent transendothelial channels. J. Cell. Biol. 64, 586–607 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Couet, J., Li, S., Okamoto, T., Ikezu, T. & Lisanti, M.P. Identification of peptide and protein ligands for the caveolin-scaffolding domain: Implications for the interaction of caveolin with caveolae-associated proteins. J. Biol. Chem. 272, 6525–6533 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Okamoto, T., Schlegel, A., Scherer, P.E. & Lisanti, M.P., Caveolins, a family of scaffolding proteins for organizing ‘pre-assembled signaling complexes’ at the plasma membrane. J. Biol. Chem. in press.

  14. Song, K.S. et al. Expression of caveolin-3 in skeletal, cardiac and smooth muscle cells: caveolin-3 is a component of the sarcolemma and co- fractionates with dystrophin and dystrophin-associated glycoproteins. J. Biol. Chem. 271, 15160–15165 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Hoffman, E.P., Brown, R.H. & Kunkel, L.M. Dystrophin: the protein product of the Duchenne muscular dystrophy. Cell 51, 919–928 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Ervasti, J.M. & Campbell, K.P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1996).

    Article  Google Scholar 

  17. Helbling-Leclerc, A. et al. Mutations in the laminin α2-chain (LAMA2) cause merosin-deficient congenital muscular dystrophy. Nature Genet. 11, 216–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Song, K.S., Tang, Z.L., Li, S. & Lisanti, M.P. Mutational analysis of the properties of caveolin-1: a novel role for the C-terminal domain in mediating homo-typing caveolin-caveolin interactions. J. Biol. Chem. 272, 398–403 (1997).

    Google Scholar 

  19. Li, S. et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J. Biol. Chem. 270, 15693–15701 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Neer, E.J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249–257 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Song, K.S., Li, S., Okamoto, T., Quilliam, L., Sargiacomo, M. & Lisanti, M.P. Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains: Detergent-free purification of caveolae membranes. J. Biol. Chem. 271, 9690–9697 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Li, S., Cuet, J. & Lisanti, M.P. Src tyrosin kinases, Gcc subunits and H-ras share a common membrane-anchored scaffolding protein, caveolin: caveolin binding negatively regulates the autoactivation of Src tyrosine kinases. J. Biol. Chem. 271, 29182–29190 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Couet, J., Sargiacomo, M. & Lisanti, M.P. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins: Caveolin-binding negatively regulates tyrosine and serine/threonine kinase activities. J. Biol. Chem. 272, 30429–30438 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Oka, N. et al. Caveolin interaction with protein kinase C: Isoenzyme-dependent regulation of kinase activity by the caveolin-scaffolding domain peptide. J. Biol. Chem. 272, 33416–33421 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Feron, O., Belhassen, L., Kobzik, L., Smith, T.W., Kelly, R.A. & Michel, T. Endothelial nitric oxide synthase targeting to caveolae. J. Biol. Chem. 271, 22810–22814 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Garcia-Cardena, G. et al. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin: Functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem. 272, 25437–25440 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Scherer, P.S. et al. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution: Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J. Biol. Chem. 270, 16395–16401 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Scherer, P.E. et al. Cell-type and tissue-specific expression of caveolin-2: Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J. Biol. Chem. 272, 29337–29346 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Minetti, C. et al. Abnormalities in the expression of β-spectrin in Duchenne muscular dystrophy. Neurology 44, 1149–1153 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Scartezzini, P. et al. Cloning a new human gene from chromosome 21q22.3 encoding a glutamic acid-rich protein expressed in heart and skeletal muscle. Hum. Genet. 99, 387–392 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Minetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minetti, C., Sotgia, F., Bruno, C. et al. Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy. Nat Genet 18, 365–368 (1998). https://doi.org/10.1038/ng0498-365

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing