Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function

Abstract

The growth hormone–releasing hormone receptor (GHRHR) is a member of the family of G protein–coupled receptors that is expressed on pituitary somatotrope cells and mediates the actions of GHRH in stimulating growth hormone (GH) synthesis and secretion. We report that the Ghrhr gene is located in the middle of mouse chromosome 6 in the same region as the little mutation. Mice homozygous for this mutation have reduced GH secretion and a dwarf phenotype. A missense mutation was identified in the extracellular domain of the little GHRHR that disrupts receptor function, suggesting that the growth deficit in these mice results from a defect in the GHRHR. Similar alterations in GHRHR might explain some isolated GH deficiencies in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eicher, E.M. & Beamer, W.G. Inherited ateliotic dwarfism in mice: characterization of the mutation, little, on chromosome 6. J. Hered. 67, 87–91 (1976).

    Article  CAS  PubMed  Google Scholar 

  2. Beamer, W.G. & Eicher, E.M. Stimulation of growth in the little mouse. J. Endocrinol. 71, 37–45 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Hammer, R.E., Palmiter, R.D. & Brinster, R.L. Partial correction of murine hereditary growth disorder by germ-line incorporation of a new gene. Nature 311, 65–67 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Jansson, J.-O., Downs, T.R., Beamer, W.G. & Frohman, L.A. Receptor-associated resistance to growth hormone-releasing factor in dwarf “little” mice. Science 232, 511–512 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Guillemin, R. et al. Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218, 585–587 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. Rivier, J., Spiess, J., Thorner, M. & Vale, W. Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300, 276–278 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. Mayo, K.E. Molecular cloning and expression of a pituitary-specific receptor for growth hormone-releasing hormone. Molec. Endocrinol. 6, 1734–1744 (1992).

    CAS  Google Scholar 

  8. Gaylinn, B.D. et al. Molecular cloning and expression of a human anterior pituitary receptor for growth hormone-releasing hormone. Molec. Endocrinol. 7, 77–84 (1993).

    CAS  Google Scholar 

  9. Lin, C., Lin, S.-C., Chang, C.-P. & Rosenfeld, M.G. Pit–1 dependent expression of the receptor for growth hormone releasing factor mediates pituitary cell growth. Nature 360, 765–768 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Gonzalez, G.A. & Montminy, M.R. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675–689

    Article  CAS  PubMed  Google Scholar 

  11. Sheng, M., Thompson, M.A. & Greenberg, M.E. CREB: a Ca2+-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252, 1427–1430

    Article  CAS  PubMed  Google Scholar 

  12. Bodner, M. et al. The pituitary-specific transcription factor GHF–1 is a homeobox-containing protein. Cell 55, 505–518 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Ingraham, H. et al. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55, 519–529 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. McCormick, A., Brady, H., Theill, L.E. & Karin, M. Regulation of the pituitary-specific homeobox gene GHF1 by cell-autonomous and environmentalcues. Nature 345, 829–832

    Article  CAS  PubMed  Google Scholar 

  15. Struthers, R.S., Vale, W.W., Arias, C., Sawchenko, P.E. & Montminy, M.R. Somatotroph hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 350, 622–624

    Article  CAS  PubMed  Google Scholar 

  16. Copeland, N.G. & Jenkins, N.A. Development and applications of a molecular genetic linkage map of the mouse genome. Trends Genet. 7, 113–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Donahue, L.R. & Beamer, W.G. Growth hormone deficiency in ‘little’ mice results in aberrant body composition, reduced insulin-like growth factor-1 and insulin-like growth factor-binding protein-3 (IGFBP–3), but does not affect IGFBP−2, −1 or −4. J. Endocrinol. 136, 91–104 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Mayo, K.E. et al. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Molec. Endocrinol. 2, 606–612 (1988).

    Article  CAS  Google Scholar 

  19. Cheng, T.C. et al. Etiology of growth hormone deficiency in little, Ames and Snell dwarf mice. Endocrinol. 133, 1669–1678 (1983).

    Article  Google Scholar 

  20. Ishahara, T. et al. Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO Journal 10, 1635–1641 (1991).

    Article  Google Scholar 

  21. Ishihara, T., Shigemoto, R., Mori, K., Takahashi, K. & Nagata, S. Functional expression and tissue distribution of anovel receptor for vasoactive intestinal polypeptide. Neuron 8, 811–819 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Jelinek, L.J. et al. Expression cloning and signaling properties of the rat glucagon receptor. Science 259, 1614–1616 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Thorens, B. Expression cloning of the pancreatic β cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc. natn. Acad. Sci. U.S.A. 89, 8641–8645 (1992).

    Article  CAS  Google Scholar 

  24. Juppner, H. et al. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254, 1024–1026 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, H. et al. Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 254, 1022–1024 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Snell, G.D. “Dwarf” a new Mendelian recessive character of the house mouse. Proc. natn. Acad. Sci. U.S.A. 15, 733–734 (1929).

    Article  CAS  Google Scholar 

  27. Li, S. et al. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347, 528–533 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Schaible, R. & Gowen, J.W. A new dwarf mouse. Genetics 46, 896 (1961).

    Google Scholar 

  29. Wilson, D.B., Wyatt, D.P., Gadler, R.M. & Baker, C.A. Quantitative aspects of growth hormone cell maturation in the normal and little mutant mouse. Acta Anat. 131, 150–155 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Asa, S.L. et al. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinol. 131, 2083–2089 (1992).

    Article  CAS  Google Scholar 

  31. Thorner, M.O. et al. Somatotroph hyperplasia: successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone-releasing factor. J. clin. Invest. 70, 965–977 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sano, T., Asa, S.L. & Kovacs, K. Growth hormone-releasing hormone producing tumors: clinical, biochemical and morphological manifestations. Endocrine Rev. 9, 357–373 (1988).

    Article  CAS  Google Scholar 

  33. Horvath, S., Palkovits, M., Gorecs, T. & Amimura, A. Electron microscopic immunocytochemical evidence for the existence of bidirectional synaptic connections between growth hormone releasing hormone and sommatostatin neurons in the hypothalamus. Brain Res. 481, 8–15 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Phelps, C.J. & Hoffman, G.E. Isolated deficiency of immunocytochemically detected somatostatin in Snell dwarf, but not in “little”, mice. Peptides 8, 1127–1133 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Suhr, S.T., Rahal, J.O. & Mayo, K.E. Mouse growth hormone-releasing hormone: precursor structure and expression in brain and placenta. Molec. Endocrinol. 3, 1693–1700 (1989).

    Article  CAS  Google Scholar 

  36. Margioris, A.N. et al. Expression and localization of growth hormone-releasing hormone messenger ribonucleic acid in the rat placenta: in vitro secretion and regulation of its peptide product. Endocrinol. 126, 151–158 (1990).

    Article  CAS  Google Scholar 

  37. Meigan, G., Sasaki, A. & Yoshinaga, K. Immunoreactive growth hormone-releasing hormone in rat placenta. Endocrinol. 123, 1098–1102 (1988).

    Article  CAS  Google Scholar 

  38. Spatola, E. et al. Interaction of growth hormone-releasing hormone with the insulin-like growth factors during prenatal development in the rat. Endocrinol. 129, 1193–1200 (1991).

    Article  CAS  Google Scholar 

  39. Bagnato, A., Moretti, C., Ohnishi, J., Frajese, G. & Catt, K. Expression of the growth hormone-releasing hormone gene and its peptide product in the rat ovary. Endocrinol. 130, 1097–1102 (1992).

    CAS  Google Scholar 

  40. Berry, S.A. & Pescovitz, O.H. Ontogeny and pituitary regulation of testicular growth hormone-releasing hormone-like messenger RNA. Endocrinol. 127, 1404–1411 (1990).

    Article  CAS  Google Scholar 

  41. Moretti, C., Bagnato, A., Solan, N., Frajese, G. & Catt, K. Receptor-mediated actions of growth hormone releasing factor on granulosa cell differentiation. Endocrinol. 127, 2117–2126 (1990).

    Article  CAS  Google Scholar 

  42. Chiampani, T., Fabbri, A., Isidori, A. & Dufau, M.L. Growth hormone-releasing hormone is produced by rat Leydig cell in culture and acts as a positive regulator of Leydig cell function. Endocrinol. 131, 2785–2792 (1992).

    Article  Google Scholar 

  43. Dryja, T.P., Hahn, L.B., Cowley, G.S., McGee, T.L. & Berson, E.L. Mutation spectrum of the rhodopsin gene among patients with autosomal dominant retinitis pigmentosa. Proc. natn. Acad. Sci. U.S.A. 88, 9370–9374 (1991).

    Article  CAS  Google Scholar 

  44. Rosenfeld, P.S. et al. A Null mutation in the rhodopsin gene causes rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa. Nature Genet. 1, 209–213 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Rosenthal, W. et al. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359, 233–235 (1992).

    Article  CAS  PubMed  Google Scholar 

  46. Pan, Y., Metzenberg, A., Das, S., Jing, B. & Gitschier, J. Mutations in the V2 vasopressin receptor gene are associated with X-linked nephrogenic diabetes insipidus. Nature Genet. 2, 103–106 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Robbins, L.S. et al. Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72, 827–834 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Underwood, L.E. & Van Wyk, J.J. Normal and aberrant growth. In William's Textbook of Endocrinology (eds Wilson, J.D. & Foster, D.W.) 155–205 (Saunders, Philadelphia, 1985).

    Google Scholar 

  49. MacGillivray, M.H. Disorders of growth and development. In Endocrinology and Metabolism (eds Felig, P., Baxter, J.D., Broadus, A.E. & Frohman, L.A.) 1581–1628 (McGraw-Hill, New York, 1987).

    Google Scholar 

  50. Jenkins, N.A., Copeland, N.G., Taylor, B.A. & Lee, B.K., Organization, distribution, and stability of endogenous ecotropic murine leukemia virus DNA sequences in chromosomes of Mus musculus. J. Virol. 43, 26–36 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Siracusa, L.D. et al. Chromosomal location of the octamer transcription factors Otf–1, Otf–2 and Otf–3, defines multiple Otf–3-related sequences dispersed in the mouse genome. Genomics 10, 313–326 (1991).

    Article  CAS  PubMed  Google Scholar 

  52. Green, E.L. Linkage, recombination and mapping. In Genetics and Probability in Animal Breeding Experiments. 77–113 (Oxford University Press, New York, 1981).

    Chapter  Google Scholar 

  53. Harpold, M.M., Evans, R.M., Salditt-Georgieff, M. & Darnell, J.E. Production of mRNA in Chinese hamster cells: relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences. Cell 17, 1025–1035 (1979).

    Article  CAS  PubMed  Google Scholar 

  54. Heller, D.L., Gianola, K.M. & Leinwand, L.A. A highly conserved mouse gene with a propensity to form pseudogenes in mammals. Molec. Cell Biol. 8, 2797–2803 (1989).

    Article  Google Scholar 

  55. Camp, T.A., Rahal, J.O. & Mayo, K.E. Cellular localization and hormonal regulation of follicle-stimulating hormone and luteinizing hormone receptor messenger RNAs in the rat ovary. Molec. Endocrinol. 5, 1405–1417 (1991).

    Article  CAS  Google Scholar 

  56. Arrufo, A. & Seed, B. Molecular cloning of a CD28 cDNA by a high-efficiency COS cell expression system. Proc. natn. Acad. Sci. U.S.A. 84, 8573–8577 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godfrey, P., Rahal, J., Beamer, W. et al. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat Genet 4, 227–232 (1993). https://doi.org/10.1038/ng0793-227

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0793-227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing