Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome

Abstract

Cytoplasmic DNA triggers activation of the innate immune system. Although 'downstream' signaling components have been characterized, the DNA-sensing components remain elusive. Here we present a systematic proteomics screen for proteins that associate with DNA, 'crossed' to a screen for transcripts induced by interferon-β, which identified AIM2 as a candidate cytoplasmic DNA sensor. AIM2 showed specificity for double-stranded DNA. It also recruited the inflammasome adaptor ASC and localized to ASC 'speckles'. A decrease in AIM2 expression produced by RNA-mediated interference impaired DNA-induced maturation of interleukin 1β in THP-1 human monocytic cells, which indicated that endogenous AIM2 is required for DNA recognition. Reconstitution of unresponsive HEK293 cells with AIM2, ASC, caspase-1 and interleukin 1β showed that AIM2 was sufficient for inflammasome activation. Our data suggest that AIM2 is a cytoplasmic DNA sensor for the inflammasome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Orthogonal genomics and proteomics screen identifying AIM2 as candidate DNA sensor.
Figure 2: AIM2 binds directly and specifically to double-stranded DNA.
Figure 3: AIM2 is part of the inflammasome.
Figure 4: AIM2 is required for DNA-mediated secretion of IL-1β.
Figure 5: AIM2 is sufficient for IL-1β maturation.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Pichlmair, A. & Reis, E.S.C. Innate recognition of viruses. Immunity 27, 370–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Akira, S. TLR signaling. Curr. Top. Microbiol. Immunol. 311, 1–16 (2006).

    CAS  PubMed  Google Scholar 

  3. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–508 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Z. et al. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc. Natl. Acad. Sci. USA 105, 5477–5482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishii, K.J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Ishii, K.J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Petrilli, V., Dostert, C., Muruve, D.A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615–622 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Muruve, D.A. et al. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452, 103–107 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Shinozuka, K., Morita, T. & Sawai, H. Synthesis and nuclease susceptibility of alpha-oligodeoxyribonucleotide phosphorothioate. Nucleic Acids Symp. Ser. 25, 101–102 (1991).

    CAS  Google Scholar 

  11. Mazur, D.J. & Perrino, F.W. Excision of 3′ termini by the Trex1 and TREX2 3′→5′ exonucleases. Characterization of the recombinant proteins. J. Biol. Chem. 276, 17022–17029 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Morita, M. et al. Gene-targeted mice lacking the Trex1 (DNase III) 3′→5′ DNA exonuclease develop inflammatory myocarditis. Mol. Cell. Biol. 24, 6719–6727 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choubey, D. & Panchanathan, R. Interferon-inducible Ifi200-family genes in systemic lupus erythematosus. Immunol. Lett. 119, 32–41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caposio, P. et al. A novel role of the interferon-inducible protein IFI16 as inducer of proinflammatory molecules in endothelial cells. J. Biol. Chem. 282, 33515–33529 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Moriya, M. et al. Role of charged and hydrophobic residues in the oligomerization of the PYRIN domain of ASC. Biochemistry 44, 575–583 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Albrecht, M., Choubey, D. & Lengauer, T. The HIN domain of IFI-200 proteins consists of two OB folds. Biochem. Biophys. Res. Commun. 327, 679–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Masumoto, J., Taniguchi, S. & Sagara, J. Pyrin N-terminal homology domain- and caspase recruitment domain-dependent oligomerization of ASC. Biochem. Biophys. Res. Commun. 280, 652–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Natarajan, A., Ghose, R. & Hill, J.M. Structure and dynamics of ASC2, a pyrin domain-only protein that regulates inflammatory signaling. J. Biol. Chem. 281, 31863–31875 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Yu, H.B. & Finlay, B.B. The caspase-1 inflammasome: a pilot of innate immune responses. Cell Host Microbe 4, 198–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kanneganti, T.D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Johnston, J.B. et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23, 587–598 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Dorfleutner, A. et al. A Shope Fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 35, 685–694 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baechler, E.C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 100, 2610–2615 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woerner, S.M. et al. The putative tumor suppressor AIM2 is frequently affected by different genetic alterations in microsatellite unstable colon cancers. Genes Chromosom. Cancer 46, 1080–1089 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Burckstummer, T. et al. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat. Methods 3, 1013–1019 (2006).

    Article  PubMed  Google Scholar 

  28. Irizarry, R.A. et al. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge O. Hantschel and A. Pichlmair for critical reading of the manuscript, and M. Brehme for help with illustrations. Supported by the Austrian Academy of Sciences (for the Research Center for Molecular Medicine), the GenAU Program of the Austrian Federal Ministry of Science and Research (Austrian Proteomics Platform II (GZ200.145/I-VI/I/2006) and DRAGON (GZ200.142/I-VI/I/2006)), the European Commission (PIEF-GA-2008-220596 to C.B.) and the Austrian Science Fund (FWF W1205 to E.D.).

Author information

Authors and Affiliations

Authors

Contributions

T.B. did most of the experiments, developed the experimental design, supervised the project and wrote the manuscript; C.B. contributed to the cloning and did the immunofluorescence excperiments; S.B. and H.J. contributed to experiments; E.D. and G.D. did the initial screen; J.C. supervised the bioinformatics analysis; M.B. did the microarray experiments; M.P. and K.L.B. did the mass spectrometry analysis; and G.S.-F. conceived the overall strategy, cosupervised the project and contributed to writing the manuscript.

Corresponding author

Correspondence to Giulio Superti-Furga.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1063 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürckstümmer, T., Baumann, C., Blüml, S. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10, 266–272 (2009). https://doi.org/10.1038/ni.1702

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1702

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing