Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Checkpoints in lymphocyte development and autoimmune disease

Abstract

Antigen receptor–controlled checkpoints in B lymphocyte development are crucial for the prevention of autoimmune diseases such as systemic lupus erythematosus. Checkpoints at the stage of pre–B cell receptor (pre-BCR) and BCR expression can eliminate certain autoreactive BCRs either by deletion of or anergy induction in cells expressing autoreactive BCRs or by receptor editing. For T cells, the picture is more complex because there are regulatory T (Treg) cells that mediate dominant tolerance, which differs from the recessive tolerance mediated by deletion and anergy. Negative selection of thymocytes may be as essential as Treg cell generation in preventing autoimmune diseases such as type 1 diabetes, but supporting evidence is scarce. Here we discuss several scenarios in which failures at developmental checkpoints result in autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pre-BCR cross-linking.
Figure 2: Model of involvement of complement and natural serum IgM in B cell central tolerance.
Figure 3: Weak epitopes fail to negatively select thymocytes.

Similar content being viewed by others

References

  1. Yamagami, T., ten Boekel, E., Andersson, J., Rolink, A. & Melchers, F. Frequencies of multiple IgL chain gene rearrangements in single normal or kappaL chain-deficient B lineage cells. Immunity 11, 317–327 (1999).

    CAS  PubMed  Google Scholar 

  2. von Boehmer, H. et al. Thymic selection revisited: how essential is it? Immunol. Rev. 191, 62–78 (2003).

    CAS  PubMed  Google Scholar 

  3. ten Boekel, E., Melchers, F. & Rolink, A.G. Changes in the V(H) gene repertoire of developing precursor B lymphocytes in mouse bone marrow mediated by the pre-B cell receptor. Immunity 7, 357–368 (1997).

    CAS  PubMed  Google Scholar 

  4. Tung, J.W. & Herzenberg, L.A. Unraveling B-1 progenitors. Curr. Opin. Immunol. 19, 150–155 (2007).

    CAS  PubMed  Google Scholar 

  5. Wardemann, H., Boehm, T., Dear, N. & Carsetti, R. B-1a B cells that link the innate and adaptive immune responses are lacking in the absence of the spleen. J. Exp. Med. 195, 771–780 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Loder, F. et al. B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med. 190, 75–89 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Havran, W.L. & Allison, J.P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335, 443–445 (1988).

    CAS  PubMed  Google Scholar 

  8. von Boehmer, H. & Fehling, H.J. Structure and function of the pre-T cell receptor. Annu. Rev. Immunol. 15, 433–452 (1997).

    CAS  PubMed  Google Scholar 

  9. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    CAS  PubMed  Google Scholar 

  10. Kreslavsky, T., Garbe, A.I., Krueger, A. & von Boehmer, H. T cell receptor-instructed αβ versus γδ lineage commitment revealed by single-cell analysis. J. Exp. Med. 205, 1173–1186 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. von Boehmer, H. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv. Immunol. 84, 201–238 (2004).

    CAS  PubMed  Google Scholar 

  12. von Boehmer, H. Positive and negative selection in Basel. Nat. Immunol. 9, 571–573 (2008).

    CAS  PubMed  Google Scholar 

  13. Wardemann, H. & Nussenzweig, M.C. B-cell self-tolerance in humans. Adv. Immunol. 95, 83–110 (2007).

    CAS  PubMed  Google Scholar 

  14. Nemazee, D. Does immunological tolerance explain the waste in the B-lymphocyte immune system? Experiment and theory. Ann. NY Acad. Sci. 764, 397–401 (1995).

    CAS  PubMed  Google Scholar 

  15. Haspel, M.V. et al. Multiple organ-reactive monoclonal autoantibodies. Nature 304, 73–76 (1983).

    CAS  PubMed  Google Scholar 

  16. Radic, M.Z. et al. Residues that mediate DNA binding of autoimmune antibodies. J. Immunol. 150, 4966–4977 (1993).

    CAS  PubMed  Google Scholar 

  17. Barbas, S.M. et al. Human autoantibody recognition of DNA. Proc. Natl. Acad. Sci. USA 92, 2529–2533 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rowley, B., Tang, L., Shinton, S., Hayakawa, K. & Hardy, R.R. Autoreactive B-1 B cells: constraints on natural autoantibody B cell antigen receptors. J. Autoimmun. 29, 236–245 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Melchers, F. The pre-B-cell receptor: selector of fitting immunoglobulin heavy chains for the B-cell repertoire. Nat. Rev. Immunol. 5, 578–584 (2005).

    CAS  PubMed  Google Scholar 

  20. Ohnishi, K. & Melchers, F. The nonimmunoglobulin portion of λ5 mediates cell-autonomous pre-B cell receptor signaling. Nat. Immunol. 4, 849–856 (2003).

    CAS  PubMed  Google Scholar 

  21. Bradl, H.W.J., Milius, D., Vettermann, C. & Jack, H.M. Interaction of murine precursors B cell receptor with stroma cells is controlled by the unique tail of lambda 5 and stroma cell-associated heparan sulfate. J. Immunol. 171, 2338–2348 (2003).

    CAS  PubMed  Google Scholar 

  22. Grawunder, U., Haasner, D., Melchers, F. & Rolink, A. Rearrangement and expression of kappa light chain genes can occur without mu heavy chain expression during differentiation of pre-B cells. Int. Immunol. 5, 1609–1618 (1993).

    CAS  PubMed  Google Scholar 

  23. Rolink, A., Melchers, F. & Andersson, J. The SCID but not the RAG-2 gene product is required for S mu-S epsilon heavy chain class switching. Immunity 5, 319–330 (1996).

    CAS  PubMed  Google Scholar 

  24. Grawunder, U., Rolink, A. & Melchers, F. Induction of sterile transcription from the kappa L chain gene locus in V(D)J recombinase-deficient progenitor B cells. Int. Immunol. 7, 1915–1925 (1995).

    CAS  PubMed  Google Scholar 

  25. Rolink, A. et al. B cell development in mice with a defective lambda 5 gene. Eur. J. Immunol. 23, 1284–1288 (1993).

    CAS  PubMed  Google Scholar 

  26. Witsch, E.J., Cao, H., Fukuyama, H. & Weigert, M. Light chain editing generates polyreactive antibodies in chronic graft-versus-host reaction. J. Exp. Med. 203, 1761–1772 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Köhler, F. et al. Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 29, 912–921 (2008).

    PubMed  Google Scholar 

  28. Ceredig, R., ten Boekel, E., Rolink, A., Melchers, F. & Andersson, J. Fetal liver organ cultures allow the proliferative expansion of pre-B receptor-expressing pre-B-II cells and the differentiation of immature and mature B cells in vitro. Int. Immunol. 10, 49–59 (1998).

    CAS  PubMed  Google Scholar 

  29. Keenan, R.A. et al. Censoring of autoreactive B cell development by the pre-B cell receptor. Science 321, 696–699 (2008).

    CAS  PubMed  Google Scholar 

  30. Lutz, J., Muller, W. & Jack, H.M. VH replacement rescues progenitor B cells with two nonproductive VDJ alleles. J. Immunol. 177, 7007–7014 (2006).

    CAS  PubMed  Google Scholar 

  31. Koralov, S.B., Novobrantseva, T.I., Konigsmann, J., Ehlich, A. & Rajewsky, K. Antibody repertoires generated by VH replacement and direct VH to JH joining. Immunity 25, 43–53 (2006).

    CAS  PubMed  Google Scholar 

  32. Zhang, Z. et al. Contribution of Vh gene replacement to the primary B cell repertoire. Immunity 19, 21–31 (2003).

    PubMed  Google Scholar 

  33. Chen, C., Nagy, Z., Prak, E.L. & Weigert, M. Immunoglobulin heavy chain gene replacement: a mechanism of receptor editing. Immunity 3, 747–755 (1995).

    CAS  PubMed  Google Scholar 

  34. Nakajima, P.B., Kiefer, K., Price, A., Bosma, G.C. & Bosma, M.J. Two distinct populations of H chain-edited B cells show differential surrogate L chain dependence. J. Immunol. 182, 3583–3596 (2009).

    CAS  PubMed  Google Scholar 

  35. Li, H., Jiang, Y., Prak, E.L., Radic, M. & Weigert, M. Editors and editing of anti-DNA receptors. Immunity 15, 947–957 (2001).

    CAS  PubMed  Google Scholar 

  36. Gerdes, T. & Wabl, M. Autoreactivity and allelic inclusion in a B cell nuclear transfer mouse. Nat. Immunol. 5, 1282–1287 (2004).

    CAS  PubMed  Google Scholar 

  37. Khan, S.N. et al. Editing and escape from editing in anti-DNA B cells. Proc. Natl. Acad. Sci. USA 105, 3861–3866 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Doyle, C.M., Han, J., Weigert, M.G. & Prak, E.T. Consequences of receptor editing at the lambda locus: multireactivity and light chain secretion. Proc. Natl. Acad. Sci. USA 103, 11264–11269 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Meffre, E. et al. Surrogate light chain expressing human peripheral B cells produce self-reactive antibodies. J. Exp. Med. 199, 145–150 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rolink, A.G. et al. Mutations affecting either generation or survival of cells influence the pool size of mature B cells. Immunity 10, 619–628 (1999).

    CAS  PubMed  Google Scholar 

  41. Yurasov, S. et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Melchers, F. & Rolink, A.R. B cell tolerance–how to make it and how to break it. Curr. Top. Microbiol. Immunol. 305, 1–23 (2006).

    CAS  PubMed  Google Scholar 

  43. Carroll, M.C. A protective role for innate immunity in systemic lupus erythematosus. Nat. Rev. Immunol. 4, 825–831 (2004).

    CAS  PubMed  Google Scholar 

  44. Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rolink, A.G., Tschopp, J., Schneider, P. & Melchers, F. BAFF is a survival and maturation factor for mouse B cells. Eur. J. Immunol. 32, 2004–2010 (2002).

    CAS  PubMed  Google Scholar 

  46. Deane, J.A. et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 27, 801–810 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shlomchik, M.J. Sites and stages of autoreactive B cell activation and regulation. Immunity 28, 18–28 (2008).

    CAS  PubMed  Google Scholar 

  48. Liu, Y. et al. Lupus susceptibility genes may breach tolerance to DNA by impairing receptor editing of nuclear antigen-reactive B cells. J. Immunol. 179, 1340–1352 (2007).

    CAS  PubMed  Google Scholar 

  49. Kumar, K.R. et al. Regulation of B cell tolerance by the lupus susceptibility gene Ly108. Science 312, 1665–1669 (2006).

    CAS  PubMed  Google Scholar 

  50. Xie, C. et al. PI3K/AKT/mTOR hypersignaling in autoimmune lymphoproliferative disease engendered by the epistatic interplay of Sle1b and FASlpr. Int. Immunol. 19, 509–522 (2007).

    CAS  PubMed  Google Scholar 

  51. Yamasaki, S. et al. Mechanistic basis of pre–T cell receptor–mediated autonomous signaling critical for thymocyte development. Nat. Immunol. 7, 67–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Aifantis, I. et al. A critical role for the cytoplasmic tail of pTα in T lymphocyte development. Nat. Immunol. 3, 483–488 (2002).

    CAS  PubMed  Google Scholar 

  53. Borgulya, P., Kishi, H., Uematsu, Y. & von Boehmer, H. Exclusion and inclusion of α and β T cell receptor alleles. Cell 69, 529–537 (1992).

    CAS  PubMed  Google Scholar 

  54. Casanova, J.L., Romero, P., Widmann, C., Kourilsky, P. & Maryanski, J.L. T cell receptor genes in a series of class I major histocompatibility complex-restricted cytotoxic T lymphocyte clones specific for a Plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen-specific repertoire. J. Exp. Med. 174, 1371–1383 (1991).

    CAS  PubMed  Google Scholar 

  55. Padovan, E. et al. Expression of two T cell receptor α chains: dual receptor T cells. Science 262, 422–424 (1993).

    CAS  PubMed  Google Scholar 

  56. Saito, T., Sussman, J.L., Ashwell, J.D. & Germain, R.N. Marked differences in the efficiency of expression of distinct α β T cell receptor heterodimers. J. Immunol. 143, 3379–3384 (1989).

    CAS  PubMed  Google Scholar 

  57. Heath, W.R. et al. Expression of two T cell receptor α chains on the surface of normal murine T cells. Eur. J. Immunol. 25, 1617–1623 (1995).

    CAS  PubMed  Google Scholar 

  58. Yasutomo, K., Doyle, C., Miele, L., Fuchs, C. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    CAS  PubMed  Google Scholar 

  59. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    CAS  PubMed  Google Scholar 

  60. Swat, W., Ignatowicz, L., von Boehmer, H. & Kisielow, P. Clonal deletion of immature CD4+8+ thymocytes in suspension culture by extrathymic antigen-presenting cells. Nature 351, 150–153 (1991).

    CAS  PubMed  Google Scholar 

  61. Sleckman, B.P., Khor, B., Monroe, R. & Alt, F.W. Assembly of productive T cell receptor δ variable region genes exhibits allelic inclusion. J. Exp. Med. 188, 1465–1471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Haks, M.C. et al. Attenuation of γδTCR signaling efficiently diverts thymocytes to the αβ lineage. Immunity 22, 595–606 (2005).

    CAS  PubMed  Google Scholar 

  63. Hayes, S.M., Li, L. & Love, P.E. TCR signal strength influences αβ/γδ lineage fate. Immunity 22, 583–593 (2005).

    CAS  PubMed  Google Scholar 

  64. Kreslavsky, T. et al. TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. Proc. Natl. Acad. Sci. USA 106, 12453–12458 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    CAS  PubMed  Google Scholar 

  66. Chatenoud, L. NKT cells control autoimmunity. J. Clin. Invest. 110, 747–748 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, P.P. et al. Testing the NKT cell hypothesis of human IDDM pathogenesis. J. Clin. Invest. 110, 793–800 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8 αα lineage with characteristics of innate immune cells. Nat. Immunol. 5, 597–605 (2004).

    CAS  PubMed  Google Scholar 

  69. Guy-Grand, D. & Vassalli, P. Immunology. Tracing an orphan's genealogy. Science 305, 185–187 (2004).

    CAS  PubMed  Google Scholar 

  70. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    CAS  PubMed  Google Scholar 

  71. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    CAS  PubMed  Google Scholar 

  72. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol. 8, 351–358 (2007).

    CAS  PubMed  Google Scholar 

  73. Liston, A. et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc. Natl. Acad. Sci. USA 105, 11903–11908 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bautista, J.L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10, 610–617 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Huesmann, M., Scott, B., Kisielow, P. & von Boehmer, H. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66, 533–540 (1991).

    CAS  PubMed  Google Scholar 

  76. Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol. 6, 152–162 (2005).

    CAS  PubMed  Google Scholar 

  77. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    CAS  PubMed  Google Scholar 

  79. Mathis, D. & Benoist, C. A decade of AIRE. Nat. Rev. Immunol. 7, 645–650 (2007).

    CAS  PubMed  Google Scholar 

  80. Hsieh, C.S. A The role of TCR specificity in naturally arising CD25+ CD4+ regulatory T cell biology. Curr. Top. Microbiol. Immunol. 293, 25–42 (2005).

    CAS  PubMed  Google Scholar 

  81. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self-tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2009).

    PubMed  Google Scholar 

  82. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    CAS  PubMed  Google Scholar 

  83. Kappler, J.W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

    CAS  PubMed  Google Scholar 

  84. Ramsdell, F. & Fowlkes, B.J. Clonal deletion versus clonal anergy: the role of the thymus in inducing self tolerance. Science 248, 1342–1348 (1990).

    CAS  PubMed  Google Scholar 

  85. Burnet, F.M. The Clonal Selection Theory (Cambridge Univ. Press, London, 1959).

    Google Scholar 

  86. Lederberg, J. Genes and antibodies: do antigens bear instructions for antibody specificity or do they select cell lines that arise by mutation? Science 129, 1649–1653 (1959).

    CAS  PubMed  Google Scholar 

  87. Ohki, H., Martin, C., Corbel, C., Coltey, M. & Le Douarin, N.M. Tolerance induced by thymic epithelial grafts in birds. Science 237, 1032–1035 (1987).

    CAS  PubMed  Google Scholar 

  88. Salaün, J. et al. Thymic epithelium tolerizes for histocompatibility antigens. Science 247, 1471–1474 (1990).

    PubMed  Google Scholar 

  89. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  90. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  91. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  92. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  93. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    CAS  PubMed  Google Scholar 

  94. Chatila, T.A. et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J. Clin. Invest. 106, R75–R81 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kisielow, P., Teh, H.S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730–733 (1988).

    CAS  PubMed  Google Scholar 

  96. von Boehmer, H., Kirberg, J. & Rocha, B. An unusual lineage of α/β T cells that contains autoreactive cells. J. Exp. Med. 174, 1001–1008 (1991).

    CAS  PubMed  Google Scholar 

  97. Bruno, L., Fehling, H.J. & von Boehmer, H. The α β T cell receptor can replace the γδ receptor in the development of γδ lineage cells. Immunity 5, 343–352 (1996).

    CAS  PubMed  Google Scholar 

  98. Egawa, T., Kreslavsky, T., Littman, D.R. & von Boehmer, H. Lineage diversion of T cell receptor transgenic thymocytes revealed by lineage fate mapping. PLoS One 3, e1512 (2008).

    PubMed  PubMed Central  Google Scholar 

  99. Takahama, Y., Shores, E.W. & Singer, A. Negative selection of precursor thymocytes before their differentiation into CD4+CD8+ cells. Science 258, 653–656 (1992).

    CAS  PubMed  Google Scholar 

  100. Buch, T., Rieux-Laucat, F., Forster, I. & Rajewsky, K. Failure of HY-specific thymocytes to escape negative selection by receptor editing. Immunity 16, 707–718 (2002).

    CAS  PubMed  Google Scholar 

  101. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    CAS  PubMed  Google Scholar 

  102. McCaughtry, T.M., Baldwin, T.A., Wilken, M.S. & Hogquist, K.A. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J. Exp. Med. 205, 2575–2584 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Baldwin, T.A., Sandau, M.M., Jameson, S.C. & Hogquist, K.A. The timing of TCR α expression critically influences T cell development and selection. J. Exp. Med. 202, 111–121 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Smith, C.A., Williams, G.T., Kingston, R., Jenkinson, E.J. & Owen, J.J. Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337, 181–184 (1989).

    CAS  PubMed  Google Scholar 

  105. Wack, A. et al. Direct visualization of thymocyte apoptosis in neglect, acute and steady-state negative selection. Int. Immunol. 8, 1537–1548 (1996).

    CAS  PubMed  Google Scholar 

  106. von Boehmer, H. Developmental biology of T cells in T cell-receptor transgenic mice. Annu. Rev. Immunol. 8, 531–556 (1990).

    CAS  PubMed  Google Scholar 

  107. Nemazee, D. Receptor editing in lymphocyte development and central tolerance. Nat. Rev. Immunol. 6, 728–740 (2006).

    CAS  PubMed  Google Scholar 

  108. Sprent, J. & Kishimoto, H. The thymus and negative selection. Immunol. Rev. 185, 126–135 (2002).

    CAS  PubMed  Google Scholar 

  109. Swat, W., Dessing, M., von Boehmer, H. & Kisielow, P. CD69 expression during selection and maturation of CD4+8+ thymocytes. Eur. J. Immunol. 23, 739–746 (1993).

    CAS  PubMed  Google Scholar 

  110. Bonasio, R. et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol. 7, 1092–1100 (2006).

    CAS  PubMed  Google Scholar 

  111. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    CAS  PubMed  Google Scholar 

  112. Wicker, L.S. et al. Type 1 diabetes genes and pathways shared by humans and NOD mice. J. Autoimmun. 25 (suppl.), 29–33 (2005).

    CAS  PubMed  Google Scholar 

  113. Anderson, M.S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  114. Kishimoto, H. & Sprent, J. A defect in central tolerance in NOD mice. Nat. Immunol. 2, 1025–1031 (2001).

    CAS  PubMed  Google Scholar 

  115. Zucchelli, S. et al. Defective central tolerance induction in NOD mice: genomics and genetics. Immunity 22, 385–396 (2005).

    CAS  PubMed  Google Scholar 

  116. Liston, A. et al. Impairment of organ-specific T cell negative selection by diabetes susceptibility genes: genomic analysis by mRNA profiling. Genome Biol. 8, R12 (2007).

    PubMed  PubMed Central  Google Scholar 

  117. Pugliese, A. et al. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15, 293–297 (1997).

    CAS  PubMed  Google Scholar 

  118. Jaeckel, E., Lipes, M.A. & von Boehmer, H. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat. Immunol. 5, 1028–1035 (2004).

    CAS  PubMed  Google Scholar 

  119. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    CAS  PubMed  Google Scholar 

  120. Sarukhan, A., Garcia, C., Lanoue, A. & von Boehmer, H. Allelic inclusion of T cell receptor α genes poses an autoimmune hazard due to low-level expression of autospecific receptors. Immunity 8, 563–570 (1998).

    CAS  PubMed  Google Scholar 

  121. Hahn, M., Nicholson, M.J., Pyrdol, J. & Wucherpfennig, K.W. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol. 6, 490–496 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Garcia, K.C., Teyton, L. & Wilson, I.A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    CAS  PubMed  Google Scholar 

  123. Suri, A., Levisetti, M.G. & Unanue, E.R. Do the peptide-binding properties of diabetogenic class II molecules explain autoreactivity? Curr. Opin. Immunol. 20, 105–110 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Deutsche Forschungsgesellschaft (Koselleck grant P.S.ME 2764/1-1 to F.M.) and the US National Institutes of Health (ROI AI 045846, R37 AI 053102, ROI AI 051378 and POI CA 10990 to H.v.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harald von Boehmer or Fritz Melchers.

Ethics declarations

Competing interests

F.M. is cofounder and member of the board of directors of 4-Antibody AG, Basel, Switzerland, a biotechnology company that generates and improves human monoclonal antibodies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Boehmer, H., Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol 11, 14–20 (2010). https://doi.org/10.1038/ni.1794

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing