Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory functions of ubiquitination in the immune system

Abstract

Protein modification via covalent attachment of ubiquitin has emerged as one of the most common regulatory processes in all eukaryotes; it is possibly second only to phosphorylation. In fact, ubiquitination and phosphorylation have much in common: both occur rapidly—often in response to an extracellular signal—and both are quickly reversed by a large set of dedicated enzymes termed deubiquitination enzymes and phosphatases, respectively. In addition, these two protein-modification events often cooperate in mobilizing a particular cellular pathway. Traditionally, ubiquitination has been associated with proteolytic events, mostly in conjunction with the 26S proteosome. Recently, however, ubiquitination has been implicated in other regulatory mechanisms. Some involve proteosome-independent protein degradation, whereas others are entirely proteolysis-independent, ranging from protein kinase activation to translation control. Therefore, it is not surprising that the ever-evolving immune system is an excellent mirror for the multiple roles played by ubiquitination within an organism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IκBα degradation by the multisubunit E3 SCFβ–TrCP.
Figure 2: Stimulatory ubiquitination.
Figure 3: Inhibitory ubiquitination: deconstructing T cell SMAC via Cbl-b and its hypothetical reconstruction by deubiquitination enzymes.

Similar content being viewed by others

References

  1. Hershko, A., Ciechanover, A. & Varshavsky, A. Basic Medical Research Award. The ubiquitin system. Nature Med. 6, 1073–1081 (2000).

    CAS  PubMed  Google Scholar 

  2. Ciechanover, A., Orian, A. & Schwartz, A. L. Ubiquitin-mediated proteolysis: biological regulation via destruction. Bioessays 22, 442–451 (2000).

    CAS  PubMed  Google Scholar 

  3. Hochstrasser, M. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell. Biol. 2, 153–157 (2000).

    Google Scholar 

  4. Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol. 10, 335–342 (2000).

    CAS  PubMed  Google Scholar 

  5. Read, M. A. et al. Nedd8 modification of cul-1 activates SCFβ–TrCP -dependent ubiquitination of IκBα. Mol. Cell. Biol. 20, 2326–2333 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawakami, T. et al. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 20, 4003–4012 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hay, R. T. Protein modification by SUMO. Trends Biochem. Sci. 26, 332–333 (2001).

    CAS  PubMed  Google Scholar 

  8. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    CAS  PubMed  Google Scholar 

  9. Jackson, P. K. et al. The lore of the RINGs: substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429–439 (2000).

    CAS  PubMed  Google Scholar 

  10. Weissman, A. M. Themes and variations on ubiquitylation. Nature Rev. Mol. Cell. Biol. 2, 169–178 (2001).

    CAS  Google Scholar 

  11. Deshaies, R. J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell. Dev. Biol. 15, 435–467 (1999).

    CAS  PubMed  Google Scholar 

  12. Zachariae, W. & Nasmyth, K. Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039–2058 (1999).

    CAS  PubMed  Google Scholar 

  13. Kondo, K. & Kaelin, W. G. Jr The von Hippel-Lindau tumor suppressor gene. Exp. Cell. Res. 264, 117–125 (2001).

    CAS  PubMed  Google Scholar 

  14. Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K. I. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276, 33111–33120 (2001).

    CAS  PubMed  Google Scholar 

  15. Yewdell, J. W. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol. 11, 294–297 (2001).

    CAS  PubMed  Google Scholar 

  16. Kloetzel, P. M. Antigen processing by the proteasome. Nature Rev. Mol. Cell. Biol. 2, 179–187 (2001).

    CAS  Google Scholar 

  17. Baeuerle, P. A. & Baltimore, D. NF-κB: ten years after. Cell 87, 13–20 (1996).

    CAS  PubMed  Google Scholar 

  18. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    CAS  PubMed  Google Scholar 

  19. Baldwin, A. S. Jr Series introduction: the transcription factor NF-κB and human disease. J. Clin. Invest. 107, 3–6 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Silverman, N. & Maniatis, T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15, 2321–2342 (2001).

    CAS  PubMed  Google Scholar 

  21. Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-κB B leads to multifocal defects in immune responses. Cell 80, 321–330 (1995).

    CAS  PubMed  Google Scholar 

  22. Ishikawa, H. et al. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor NF-κB but expressing p50. J. Exp. Med. 187, 985–996 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavon, I. et al. High susceptibility to bacterial infection, but no liver dysfunction, in mice compromised for hepatocyte NF-κB activation. Nature Med. 6, 573–577 (2000).

    CAS  PubMed  Google Scholar 

  24. Mansour, S. et al. Incontinentia pigmenti in a surviving male is accompanied by hypohidrotic ectodermal dysplasia and recurrent infection. Am. J. Med. Genet. 99, 172–177 (2001).

    CAS  PubMed  Google Scholar 

  25. Boothby, M. R., Mora, A. L., Scherer, D. C., Brockman, J. A. & Ballard, D. W. Perturbation of the T lymphocyte lineage in transgenic mice expressing a constitutive repressor of nuclear factor NF-κB. J. Exp. Med. 185, 1897–1907 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hettmann, T., DiDonato, J., Karin, M. & Leiden, J. M. An essential role for NF-κB in promoting double positive thymocyte apoptosis. J. Exp. Med. 189, 145–158 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Grossmann, M. et al. The anti-apoptotic activities of Rel and RelA required during B-cell maturation involve the regulation of Bcl-2 expression. EMBO J. 19, 6351–6360 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Voll, R. E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).

    CAS  PubMed  Google Scholar 

  29. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    CAS  PubMed  Google Scholar 

  30. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    CAS  PubMed  Google Scholar 

  31. Winston, J. T. et al. The SCF β-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hattori, K., Hatakeyama, S., Shirane, M., Matsumoto, M. & Nakayama, K. Molecular dissection of the interactions among pIκBα, FWD1, and Skp1 required for ubiquitin-mediated proteolysis of pIκBα. J. Biol. Chem. 274, 29641–29647 (1999).

    CAS  PubMed  Google Scholar 

  34. Kroll, M. et al. Inducible degradation of pIκBα by the proteasome requires interaction with the F-box protein h-β-TrCP. J. Biol. Chem. 274, 7941–7945 (1999).

    CAS  PubMed  Google Scholar 

  35. Yaron, A. et al. Inhibition of NF-κB cellular function via specific targeting of the IκB-ubiquitin ligase. EMBO J. 16, 6486–6494 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Arenzana-Seisdedos, F. et al. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci. 110, 369–378 (1997).

    CAS  PubMed  Google Scholar 

  37. Huang, T. T., Kudo, N., Yoshida, M. & Miyamoto, S. A nuclear export signal in the N-terminal regulatory domain of pIκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes. Proc. Natl Acad. Sci. USA 97, 1014–1019 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Johnson, C., Van Antwerp, D. & Hope, T. J. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of pIκBα. EMBO J. 18, 6682–6693 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Malek, S., Chen, Y., Huxford, T. & Ghosh, G. IκBβ, but not pIκBα, functions as a classical cytoplasmic inhibitor of NF-κB dimers by masking both NF-κB nuclear localization sequences in resting cells. J. Biol. Chem. 276, 45225–45235 (2001).

    CAS  PubMed  Google Scholar 

  40. Tam, W. F. & Sen, R. IκB family members function by different mechanisms. J. Biol. Chem. 276, 7701–7704 (2001).

    CAS  PubMed  Google Scholar 

  41. Wilkinson, K. D. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin. Cell. Dev. Biol. 11, 141–148 (2000).

    CAS  PubMed  Google Scholar 

  42. Neish, A. S. et al. Prokaryotic regulation of epithelial responses by inhibition of pIκBα ubiquitination. Science 289, 1560–1503 (2000).

    CAS  PubMed  Google Scholar 

  43. Lin, L., DeMartino, G. N. & Greene, W. C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92, 819–828 (1998).

    CAS  PubMed  Google Scholar 

  44. Ciechanover, A. et al. Mechanisms of ubiquitin-mediated, limited processing of the NF-κB1 precursor protein p105. Biochimie 83, 341–349 (2001).

    CAS  PubMed  Google Scholar 

  45. Orian, A. et al. SCFβ–TrCP ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase. EMBO J. 19, 2580–2591 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Heissmeyer, V., Krappmann, D., Hatada, E. N. & Scheidereit, C. Shared pathways of IκB kinase-induced SCFβ–TrC-mediated ubiquitination and degradation for the NF-κB precursor p105 and pIκBα. Mol. Cell. Biol. 21, 1024–1035 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Orian, A. et al. Structural motifs involved in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol. 19, 3664–3673 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    CAS  PubMed  Google Scholar 

  49. Lin, L. & Ghosh, S. A glycine-rich region in NF-κB p105 functions as a processing signal for the generation of the p50 subunit. Mol. Cell. Biol. 16, 2248–22454 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA 94, 12616–12621 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    CAS  PubMed  Google Scholar 

  52. Sears, C., Olesen, J., Rubin, D., Finley, D. & Maniatis, T. NF-κB p105 processing via the ubiquitin-proteasome pathway. J. Biol. Chem. 273, 1409–1419 (1998).

    CAS  PubMed  Google Scholar 

  53. Silverman, N. et al. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14, 2461–2471 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Stoven, S., Ando, I., Kadalayil, L., Engstrom, Y. & Hultmark, D. Activation of the Drosophila NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1, 347–352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Leulier, F., Rodriguez, A., Khush, R. S., Abrams, J. M. & Lemaitre, B. The Drosophila caspase Dredd is required to resist gram-negative bacterial infection. EMBO Rep. 1, 353–358 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. O'Neill, L. A. & Dinarello, C. A. The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol. Today 21, 206–209 (2000).

    CAS  PubMed  Google Scholar 

  57. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    CAS  PubMed  Google Scholar 

  58. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    CAS  PubMed  Google Scholar 

  59. Hofmann, R. M. & Pickart, C. M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    CAS  PubMed  Google Scholar 

  60. Takayanagi, H. et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross- talk between RANKL and IFN-γ. Nature 408, 600–605 (2000).

    CAS  PubMed  Google Scholar 

  61. Yamaguchi, K. et al. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J. 18, 179–187 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, Y., Fang, S., Jensen, J. P., Weissman, A. M. & Ashwell, J. D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288, 874–877 (2000).

    CAS  PubMed  Google Scholar 

  63. Chen, Z. J., Parent, L. & Maniatis, T. Site-specific phosphorylation of pIκBα by a novel ubiquitination- dependent protein kinase activity. Cell 84, 853–862 (1996).

    CAS  PubMed  Google Scholar 

  64. Pawson, T. & Nash, P. Protein-protein interactions define specificity in signal transduction. Genes Dev. 14, 1027–1047 (2000).

    CAS  PubMed  Google Scholar 

  65. Hicke, L. A new ticket for entry into budding vesicles-ubiquitin. Cell 106, 527–530 (2001).

    CAS  PubMed  Google Scholar 

  66. Katzmann, D. J., Babst, M. & Emr, S. D. Ubiquitin-dependent sorting into the multivesicular body pathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I. Cell 106, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  67. Rocca, A., Lamaze, C., Subtil, A. & Dautry-Varsat, A. Involvement of the ubiquitin/proteasome system in sorting of the interleukin 2 receptor β chain to late endocytic compartments. Mol. Biol. Cell. 12, 1293–1301 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell. Biol. 2, 294–307 (2001).

    CAS  Google Scholar 

  69. Yoon, C. H., Lee, J., Jongeward, G. D. & Sternberg, P. W. Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science 269, 1102–1105 (1995).

    CAS  PubMed  Google Scholar 

  70. Ota, Y. & Samelson, L. E. The product of the proto-oncogene c-cbl: a negative regulator of the Syk tyrosine kinase. Science 276, 418–420 (1997).

    CAS  PubMed  Google Scholar 

  71. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell. 4, 1029–1040 (1999).

    CAS  PubMed  Google Scholar 

  72. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2- dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    CAS  PubMed  Google Scholar 

  73. Lee, P. S. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 18, 3616–3628 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Fang, D. & Liu, Y. C. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunol. 2, 870–875 (2001).

    CAS  Google Scholar 

  75. Rudd, C. E. & Schneider, H. Lymphocyte signaling: Cbl sets the threshold for autoimmunity. Curr. Biol. 10, R344–347 (2000).

    Google Scholar 

  76. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    CAS  PubMed  Google Scholar 

  77. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    CAS  PubMed  Google Scholar 

  78. Krawczyk, C. & Penninger, J. M. Molecular controls of antigen receptor clustering and autoimmunity. Trends Cell Biol. 11, 212–220 (2001).

    CAS  PubMed  Google Scholar 

  79. Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3- kinase for ubiquitination in T cells. J. Biol. Chem. 276, 4872–4878 (2001).

    CAS  PubMed  Google Scholar 

  80. D'Andrea, A. & Pellman, D. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol. 33, 337–352 (1998).

    CAS  PubMed  Google Scholar 

  81. Migone, T. S. et al. The deubiquitinating enzyme DUB-2 prolongs cytokine-induced signal transducers and activators of transcription activation and suppresses apoptosis following cytokine withdrawal. Blood 98, 1935–1941 (2001).

    CAS  PubMed  Google Scholar 

  82. Yasukawa, H., Sasaki, A. & Yoshimura, A. Negative regulation of cytokine signaling pathways. Annu. Rev. Immunol. 18, 143–164 (2000).

    CAS  PubMed  Google Scholar 

  83. Sporri, B., Kovanen, P. E., Sasaki, A., Yoshimura, A. & Leonard, W. J. JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling. Blood 97, 221–226 (2001).

    CAS  PubMed  Google Scholar 

  84. Krebs, D. L. & Hilton, D. J. Socs proteins: negative regulators of cytokine signaling. Stem Cells 19, 378–387 (2001).

    CAS  PubMed  Google Scholar 

  85. De Sepulveda, P., Ilangumaran, S. & Rottapel, R. Suppressor of cytokine signaling-1 inhibits VAV function through protein degradation. J. Biol. Chem. 275, 14005–14008 (2000).

    CAS  PubMed  Google Scholar 

  86. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank members of my laboratory, A. Ciechanover and A. Mahler for helpful comments on the manuscript. Supported by the Israel Science Foundation; funded by the Israel Academy for Sciences and Humanities-Centers of Excellence Program, the German-Israeli Program (DIP) and the European Community (5th Framework).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinon Ben-Neriah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Neriah, Y. Regulatory functions of ubiquitination in the immune system. Nat Immunol 3, 20–26 (2002). https://doi.org/10.1038/ni0102-20

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0102-20

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing