Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Dendritic cell immunotherapy: mapping the way

Abstract

Dendritic cells (DCs) are the professional antigen-presenting cells of the immune system, with the potential to either stimulate or inhibit immune responses. Exploiting the immune-regulatory capacities of dendritic cells holds great promise for the treatment of cancer, autoimmune diseases and the prevention of transplant rejection. Although early clinical trials indicate that DC vaccines can induce immune responses in some cancer patients, careful study design and use of standardized clinical and immunological criteria are needed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DC immunotherapy: mapping the way.

Renee Lucas

Figure 2: DC immunotherapy: exploitating molecular mechanisms.

Similar content being viewed by others

References

  1. Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat. Med. 2, 52–58 (1996).

    Article  CAS  Google Scholar 

  2. Banchereau, J., Schuler-Thurner, B., Palucka, A.K. & Schuler, G. Dendritic cells as vectors for therapy. Cell 106, 271–274 (2001).

    Article  CAS  Google Scholar 

  3. Steinman, R.M. & Pope, M. Exploiting dendritic cells to improve vaccine efficacy. J. Clin. Invest. 109, 1519–1526 (2002).

    Article  CAS  Google Scholar 

  4. Romani, N. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83–93 (1994).

    Article  CAS  Google Scholar 

  5. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  Google Scholar 

  6. Bernhard, H. et al. Generation of immunostimulatory dendritic cells from human CD34+ hematopoietic progenitor cells of the bone marrow and peripheral blood. Cancer Res. 55, 1099–1104 (1995).

    CAS  PubMed  Google Scholar 

  7. Mackensen, A. et al. Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Int. J. Cancer 86, 385–392 (2000).

    Article  CAS  Google Scholar 

  8. Banchereau, J. et al. Immune and clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine. Cancer Res. 61, 6451–6458 (2001).

    CAS  PubMed  Google Scholar 

  9. Heiser, A. et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest. 109, 409–417 (2002).

    Article  CAS  Google Scholar 

  10. De Vries, I.J. et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res. 63, 12–17 (2003).

    CAS  PubMed  Google Scholar 

  11. Martin-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    Article  CAS  Google Scholar 

  12. Ratzinger, G. et al. Matrix metalloproteinases 9 and 2 are necessary for the migration of Langerhans cells and dermal dendritic cells from human and murine skin. J. Immunol. 168, 4361–4371 (2002).

    Article  CAS  Google Scholar 

  13. Garg, S. et al. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo . Nat. Immunol. 4, 907–912 (2003).

    Article  CAS  Google Scholar 

  14. Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol. 4, 579–585 (2003).

    Article  CAS  Google Scholar 

  15. Miller, M.J., Hejazi, A.S., Wei, S.H., Cahalan, M.D. & Parker, I. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc. Natl. Acad. Sci. USA 101, 998–1003 (2004).

    Article  CAS  Google Scholar 

  16. Jonuleit, H. et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int. J. Cancer 93, 243–251 (2001).

    Article  CAS  Google Scholar 

  17. Mullins, D.W. et al. Route of immunization with peptide-pulsed dendritic cells controls the distribution of memory and effector T cells in lymphoid tissues and determines the pattern of regional tumor control. J. Exp. Med. 198, 1023–1034 (2003).

    Article  CAS  Google Scholar 

  18. Pulendran, B. et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo . J. Immunol. 165, 566–572 (2000).

    Article  CAS  Google Scholar 

  19. Maraskovsky, E. et al. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 96, 878–884 (2000).

    CAS  PubMed  Google Scholar 

  20. MacDonald, K.P. et al. Characterization of human blood dendritic cell subsets. Blood 100, 4512–4520 (2002).

    Article  CAS  Google Scholar 

  21. Boonstra, A. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential toll-like receptor ligation. J. Exp. Med. 197, 101–109 (2003).

    Article  CAS  Google Scholar 

  22. Salio, M. et al. Plasmacytoid dendritic cells prime IFN-γ-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions. Eur. J. Immunol. 33, 1052–1062 (2003).

    Article  CAS  Google Scholar 

  23. Krug, A. et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur. J. Immunol. 31, 3026–3037 (2001).

    Article  CAS  Google Scholar 

  24. Steinman, R.M. & Nussenzweig, M.C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 99, 351–358 (2002).

    Article  CAS  Google Scholar 

  25. Toes, R.E., Ossendorp, F., Offringa, R. & Melief, C.J. CD4 T cells and their role in antitumor immune responses. J. Exp. Med. 189, 753–756 (1999).

    Article  CAS  Google Scholar 

  26. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R.M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003).

    Article  CAS  Google Scholar 

  27. Melief, C.J., Van Der Burg, S.H., Toes, R.E., Ossendorp, F. & Offringa, R. Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunol. Rev. 188, 177–182 (2002).

    Article  CAS  Google Scholar 

  28. Schuler-Thurner, B. et al. Rapid induction of tumor-specific type 1 T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J. Exp. Med. 195, 1279–1288 (2002).

    Article  CAS  Google Scholar 

  29. Fearon, E.R. et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60, 397–403 (1990).

    Article  CAS  Google Scholar 

  30. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    Article  CAS  Google Scholar 

  31. Engering, A., Geijtenbeek, T.B. & van Kooyk, Y. Immune escape through C-type lectins on dendritic cells. Trends Immunol. 23, 480–485 (2002).

    Article  CAS  Google Scholar 

  32. Rea, D. et al. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood 95, 3162–3167 (2000).

    CAS  PubMed  Google Scholar 

  33. Adorini, L., Penna, G., Giarratana, N. & Uskokovic, M. Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting allograft rejection and autoimmune diseases. J. Cell. Biochem. 88, 227–233 (2003).

    Article  CAS  Google Scholar 

  34. Martin, E., O'Sullivan, B., Low, P. & Thomas, R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity 18, 155–167 (2003).

    Article  CAS  Google Scholar 

  35. Gilboa, E., Nair, S.K. & Lyerly, H.K. Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol. Immunother. 46, 82–87 (1998).

    Article  CAS  Google Scholar 

  36. Nestle, F.O., Banchereau, J. & Hart, D. Dendritic cells: On the move from bench to bedside. Nat. Med. 7, 761–765 (2001).

    Article  CAS  Google Scholar 

  37. de Vries, I.J. et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin. Cancer Res. 9, 5091–5100 (2003).

    CAS  PubMed  Google Scholar 

  38. Dhodapkar, M.V. et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest. 104, 173–180 (1999).

    Article  CAS  Google Scholar 

  39. Dhodapkar, M.V., Krasovsky, J., Steinman, R.M. & Bhardwaj, N. Mature dendritic cells boost functionally superior CD8+ T-cell in humans without foreign helper epitopes. J. Clin. Invest. 105, R9–R14 (2000).

    Article  CAS  Google Scholar 

  40. Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat. Med. 4, 328–332 (1998).

    Article  CAS  Google Scholar 

  41. Mackensen, A., Drager, R., Schlesier, M., Mertelsmann, R. & Lindemann, A. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol. Immunother. 49, 152–156 (2000).

    Article  CAS  Google Scholar 

  42. Jonuleit, H. et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 27, 3135–3142 (1997).

    Article  CAS  Google Scholar 

  43. Bostanci, A. & Vogel, G. Research misconduct. German inquiry finds flaws, not fraud. Science 298, 1531–1533 (2002).

    Article  CAS  Google Scholar 

  44. Therasse, P. et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J. Natl. Cancer Inst. 92, 205–216 (2000).

    Article  CAS  Google Scholar 

  45. Geiger, J.D. et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res. 61, 8513–8519 (2001).

    CAS  PubMed  Google Scholar 

  46. Cerundolo, V., Hermans, I.F. & Salio, M. Dendritic cells: a journey from laboratory to clinic. Nat. Immunol. 5, 7–10 (2004).

    Article  CAS  Google Scholar 

  47. Wakkach, A. et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo . Immunity 18, 605–617 (2003).

    Article  CAS  Google Scholar 

  48. Phan, G.Q. et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci. USA 100, 8372–8377 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Adema, T. Boon, J. Mulé, C. Punt and G. Schuler for helpful suggestions and critical reading of the manuscript. This work was supported by grants KUN 1999-1950, KUN 2003-2917, KUN 2004-3126 and KUN 2004-3127 from the Dutch Cancer Society; grant 920-03-250 from the Netherlands Organization for Scientific Research; and the TIL Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl G Figdor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figdor, C., de Vries, I., Lesterhuis, W. et al. Dendritic cell immunotherapy: mapping the way. Nat Med 10, 475–480 (2004). https://doi.org/10.1038/nm1039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing